Using linear classifier to classify
Results to achieve similar to this
Should be how to implement
CodePudding user response:
To analyze what characteristic value, see other people do, but don't know how to doCodePudding user response:
Random data codeimport numpy as np
The import matplotlib
The import matplotlib. Pyplot as PLT
FIG.=PLT figure ()
Data1=np. Random. Randn (150, 2)
Data2=np. Random. Randn (150, 2) * [0.9, 1.8] + [1, 4]
Data3=np. Random. Randn (150, 2) * [0.5, 0.5] + [3, 3]
Data4=np. Random. Randn (150, 2) * (2, 1] + [7]
Ax=FIG. Add_subplot (111)
Ax. Scatter (x=data1 [0] :,, y=data1 [:, 1), label='class1', color='darkturquoise', marker='o')
Ax. Scatter (x=data2 [0] :,, y=data2 [:, 1), label='class2', color='blue', marker='^')
Ax. Scatter (x=data3 [0] :,, y=data3 [:, 1), label='class3', color='yellowgreen', marker='s')
Ax. Scatter (x=data4 [0] :,, y=data4 [:, 1), label='class4', color='red', marker='D')
Ax. Legend (loc='the lower right)
PLT. The show ()