Before (X1, Y1), after turn (X2, Y2), X1, Y1, X2, Y2 are greater than zero, strives for the compass rotation center coordinates (X, Y)?
Feeling such a solution formula out very hard!
CodePudding user response:
Don't use the Pythagorean theorem, this can seek out all the angles in the figure, also can seek out the length of the all, not complicated with trigonometric functionsCodePudding user response:
Basic math problem!CodePudding user response:
https://baike.baidu.com/item/%E6%97%8B%E8%BD%AC%E7%9F%A9%E9%98%B5/3265181? fr=aladdinCodePudding user response:
Equations out is complicated, can use the toolPoint t
Coordinates (a, b) (c, d)
X, y
Equation:
(x - a) * (x - a) + (y - b) * (y - b)=(x - c) * (x - c) + (y - d) * (y - d)
(x - a) * (x - a) + (y - b) * (y - b) * sin (t/2) * sin (t/2)=((a - c) * (a - c) + (b, d) * (b, d))/4
The results for the
X=(d * (b * (2 * SQRT (d ^ 2 * b * d + c ^ 2-2-2 * a * c + b ^ 2 + a ^ 2) * SQRT (1 - sin (t/2) ^ 2) + a * (2 * sin (t/2) ^ 2-4)) - 2 * b * c * sin (t/2) ^ 2) ^ 2 + d * ((- SQRT (d ^ 2 * b * d + c ^ 2-2-2 * a * c + b ^ 2 + a ^ 2) * SQRT (1 - sin (t/2) ^ 2)) + c * sin (t/2) ^ 2 + a * (2 - sin (t/2) ^ 2)) + b ^ 2 * (a * (2 - sin (t/2) ^ 2) - SQRT (d ^ 2 * b * d + c ^ 2-2-2 * a * c + b ^ 2 + a ^ 2) * SQRT (1 - sin (t/2) ^ 2)) + c * (b ^ 2 * sin (t/2) ^ 2 - a ^ 2 * sin (t/2) ^ 2) + c ^ 3 * sin (t/2) ^ 2 - a * c ^ 2 * sin (t/2) ^ 2 + a ^ 3 * sin (t/2) ^ 2)/(2 * c ^ 2 * sin (t/2) ^ 2-4 * a * c * sin (t/2) ^ a ^ 2 + 2 * 2 * sin (t/2) ^ 2 + 2 * d ^ 2-4 * b * d * b ^ 2 + 2),
y=(d*(c*(sqrt(d^2-2*b*d+c^2-2*a*c+b^2+a^2)*sqrt(1-sin(t/2)^2)-2*a)-a*sqrt(d^2-2*b*d+c^2-2*a*c+b^2+a^2)*sqrt(1-sin(t/2)^2)+c^2-b^2+a^2)+b*(a*sqrt(d^2-2*b*d+c^2-2*a*c+b^2+a^2)*sqrt(1-sin(t/2)^2)+a^2*(2*sin(t/2)^2-1))+b*c*(a*(2-4*sin(t/2)^2)-sqrt(d^2-2*b*d+c^2-2*a*c+b^2+a^2)*sqrt(1-sin(t/2)^2))+b*c^2*(2*sin(t/2)^2-1)+d^3-b*d^2+b^3)/(2*c^2*sin(t/2)^2-4*a*c*sin(t/2)^2+2*a^2*sin(t/2)^2+2*d^2-4*b*d+2*b^2),x=(d*(b*(a*(2*sin(t/2)^2-4)-2*sqrt(d^2-2*b*d+c^2-2*a*c+b^2+a^2)*sqrt(1-sin(t/2)^2))-2*b*c*sin(t/2)^2)+d^2*(sqrt(d^2-2*b*d+c^2-2*a*c+b^2+a^2)*sqrt(1-sin(t/2)^2)+c*sin(t/2)^2+a*(2-sin(t/2)^2))+b^2*(sqrt(d^2-2*b*d+c^2-2*a*c+b^2+a^2)*sqrt(1-sin(t/2)^2)+a*(2-sin(t/2)^2))+c*(b^2*sin(t/2)^2-a^2*sin(t/2)^2)+c^3*sin(t/2)^2-a*c^2*sin(t/2)^2+a^3*sin(t/2)^2)/(2*c^2*sin(t/2)^2-4*a*c*sin(t/2)^2+2*a^2*sin(t/2)^2+2*d^2-4*b*d+2*b^2),y=(d*(c*((-sqrt(d^2-2*b*d+c^2-2*a*c+b^2+a^2)*sqrt(1-sin(t/2)^2))-2*a)+a*sqrt(d^2-2*b*d+c^2-2*a*c+b^2+a^2)*sqrt(1-sin(t/2)^2)+c^2-b^2+a^2)+b*(a^2*(2*sin(t/2)^2-1)-a*sqrt(d^2-2*b*d+c^2-2*a*c+b^2+a^2)*sqrt(1-sin(t/2)^2))+b*c*(sqrt(d^2-2*b*d+c^2-2*a*c+b^2+a^2)*sqrt(1-sin(t/2)^2)+a*(2-4*sin(t/2)^2))+b*c^2*(2*sin(t/2)^2-1)+d^3-b*d^2+b^3)/(2*c^2*sin(t/2)^2-4*a*c*sin(t/2)^2+2*a^2*sin(t/2)^2+2*d^2-4*b*d+2*b^2)
The results for the tool automatic computing
Address: https://zh.numberempire.com/equationsolver.php
CodePudding user response:
Under a formula without the parenthesis, change to use tools to try to beCodePudding user response:
A complete solution:CodePudding user response:
Upstairs posts,The geometric sketchpad verification results
CodePudding user response:
This algorithm is not limited to the first quadrant, if the Angle & lt; 180 degrees, is the center point C is located in the left of the vector AB,CodePudding user response:
1 in 4 quadrants, 2 points in one quadrant formula has a problem,CodePudding user response:
CodePudding user response:
In a train of thought is fitting circle algorithmCodePudding user response:
Feel the 7th floor is no problem