Dear bosses, I on the basis of the single tone to achieve dual SSB modulation and demodulation of the signal, solve the demodulation code here how should change?
clc; clear all; close all; % to delete all the source code and procedures the results
% % %========================baseband signal parameter========================% % %
Am1=2; % Am1 is the first baseband signal amplitude/V
Am2=3; % Am2 as the second baseband signal amplitude/V
Fm1=100; % fm1 for first baseband signal frequency (Hz)
Fm2=200; % fm2 for second baseband signal frequency/Hz
Fc=300; % fc as the carrier signal frequency/Hz
Fs=4 * fc; % the Fs of sampling frequency/Hz
T=1-0/4 * (fc) : 1-1/4 * (fc); % t for modulation signal time discrete values/s
Mt1=Am1 * cos (2 * PI * fm1 * t); % the baseband signal generation
Fmt1=FFT (Mt1); % of the baseband signal Fourier transform
F1=(0: length (Fmt1) - 1) * Fs/length (Fmt1); % in the frequency domain frequency values
N1=length (Mt1);
Fshift1=(n1/2: n1/2-1) * (length (f1)/n1); % spectrum move
Ffmt1=fftshift (Fmt1);
Mt2=Am2 * cos (2 * PI * fm2 * t); % the baseband signal generation
Fmt2=FFT (Mt2); % of the baseband signal Fourier transform
F2=(0: length (Fmt2) - 1) * Fs/length (Fmt2); % in the frequency domain frequency values
N=length (Mt2);
Fshift2=(n2/2: n2/2-1) * (length (f2)/n2); % spectrum move
Ffmt2=fftshift (Fmt2);
Mt=Mt1 + Mt2; Synthetic baseband signal %
Fmt=FFT (Mt); % of the baseband signal Fourier transform
F=(0: length (Fmt) - 1) * Fs/length (Fmt); % in the frequency domain frequency values
N3=length (Mt);
Fshift=(n3/2: n3/2-1) * (length (f)/n3); % spectrum move
Ffmt=fftshift (Fmt);
% % %========================carrier signal parameter========================% % %
Cm=5; Ac for carrier signal amplitude/V %
Ct=Cm * cos (2 * PI * fc * t); % generated carrier signal
Ct0=Cm * sin (2 * PI * fc * t);
% generated carrier signal sine transformFct has grown=FFT (Ct); % of the carrier signal Fourier transform
F2=(0: length (Fct has grown) - 1) * 4 * fc/length (Fct has grown); % in the frequency domain frequency values
N=length (Ct);
Fshift2=(n/2: n/2-1) * (length (f2)/n); % spectrum move
Ffct=fftshift (Fct has grown);
% % %==================the baseband signal time domain waveform and spectrum graph==================% % %
Figure (1)
Subplot (2, 2, 1);
The plot (t, Mt1, '-' b)
Xlabel (' time t/s); Ylabel (' range of A/V); The title (' first baseband signal time domain waveform figure)
The axis ([0, 1-3 of 3])
Subplot (2,2,2);
The plot (fshift1, abs (Ffmt1), 'g -')
Xlabel (' frequency f/Hz); Ylabel (' amplitude/dB); The title (' first baseband signal frequency domain waveform figure)
The axis ([- 200, 200, 1500])
% % %==================the baseband signal time domain waveform and spectrum graph==================% % %
Subplot (2, 2, 3);
The plot (t, Mt2, '-' b)
Xlabel (' time t/s); Ylabel (' range of A/V); The title (' second baseband signal time domain waveform figure)
Axis ([0, 1-4 of 4])
Subplot (2, 2, 4-trichlorobenzene);
The plot (fshift2, abs (Ffmt2), 'g -')
Xlabel (' frequency f/Hz); Ylabel (' amplitude/dB); The title (' second baseband signal frequency domain waveform figure)
The axis ([- 300, 300, 2000])
% % %==================synthesis of baseband signal time domain waveform and spectrum graph==================% % %
Figure (2)
Subplot (2, 2, 1);
The plot (t, Mt, '-' b)
Xlabel (' time t/s); Ylabel (' range of A/V); The title (' synthetic baseband signal time domain waveform figure)
The axis ([0, 1-6 of 6])
Subplot (2,2,2);
The plot (fshift, abs (Ffmt), 'g -')
Xlabel (' frequency f/Hz); Ylabel (' amplitude/dB); The title (' synthetic baseband signal frequency domain waveform figure)
The axis ([- 300, 300, 2000])
% % %====================carrier signal time domain waveform and spectrum graph====================% % %
Subplot (2, 2, 3);
The plot (t, Ct, b '-')
Xlabel (' time t/s); Ylabel (' range of A/V); The title (' carrier signal time domain waveform figure)
The axis ([0, 1-6 of 6])
Subplot (2, 2, 4-trichlorobenzene);
The plot (fshift2, abs (Ffct), 'g -')
Xlabel (' frequency f/Hz); Ylabel (' amplitude E/V); The title (' carrier signal frequency domain waveform figure)
The axis ([- 400, 400, 4000])
% % %=======================modulated and demodulation signal generated=======================% % %
St=Mt. * Ct + imag (Hilbert (Mt). * Ct0; % to generate the modulated signals of lower
Fst=FFT (St);
Fst=abs (Fst (round (1: length (Fst)/2 + 1))); % the frequency spectrum of the modulated signal
F3=[0: length (Fst) - 1) * Fs/length (Fst)/2; % frequency spectrum of modulated signal
Jt=ssbdemod (St, fc, Fs); % demodulation, the role of the low-pass filter using ssbdemod function
Fjt=FFT (Jt);
Fjt=abs (Fjt (round (1: length (Fjt)/2 + 1))); % demodulation signal spectrum
F4=[0: length (Fjt) - 1) * Fs/length (Fjt)/2; The frequency of the % demodulation signal spectrum
% % %====================modulated signal time domain waveform and spectrum graph====================% % %
Figure (3)
Subplot (2, 2, 1);
The plot (t, St, '-' b)
Xlabel (' time t/s); Ylabel (' range of A/V); The title (' LSB LSB modulated signal time domain waveform figure ')
Axis ([0, 1-15 15])
Subplot (2,2,2);
The plot (f3, Fst, 'g -')
Xlabel (' frequency f/Hz); Ylabel (' amplitude E/V); The title (' LSB lower frequency modulated signal waveform figure ')
The axis ([0, 400, 10000])
% % %====================demodulation signal time domain waveform and spectrum graph====================% % %
Subplot (2, 2, 3);
The plot (t, Jt, '-' b)
Xlabel (' time t/s); Ylabel (' range of A/V); The title (' demodulation signal time domain waveform figure)
Axis ([0, 1-15 15])
Subplot (2, 2, 4-trichlorobenzene);
The plot (f4, Fjt, 'g -')
Xlabel (' frequency f/Hz); Ylabel (' amplitude E/V); The title (' demodulation signal frequency domain waveform figure)
The axis ([0, 400, 10000])
% % %=====================reception and treatment and observation window=====================% % %
N1=length (St);
W_han1=(boxcar (N1) ';
N=length (Fst);
W_han2=(boxcar (N2)) ';
J1=st. * w_han1;
J2=abs (Fst). * w_han2;
Figure (4)
Subplot (2,1,1)
The plot (t, J1, '-' b)
Xlabel (' time t/s); Ylabel (' range of A/V); Title (' lower time domain waveform figure after add window reception ')
Axis ([0, 1-15 15])
Subplot (2,1,2)
The plot (f3, J2, 'g -')
Xlabel (' frequency f/Hz); Ylabel (' amplitude E/V); Title (' receiving lower frequency domain after add window modulation signal waveform figure ')
The axis ([0, 400, 10000])