Home > other >  Multidimensional pandas dataframe data conversion numpy multidimensional array
Multidimensional pandas dataframe data conversion numpy multidimensional array

Time:11-30

How to realize the transfer from the left to the right of numpy array format:
Note: for example, using ABC only actual situation there may be unknown number of multiple tag

CodePudding user response:

Data can use the code form to? Digital soon, too

CodePudding user response:

reference 1st floor weixin_45903952 response:
data can use the code form to? Dozen figures also get soon

Data is generated, casually could transform

CodePudding user response:

reference 1st floor weixin_45903952 response:
data can use the code form to? Dozen figures also get soon

Data is generated, casually could transform

CodePudding user response:

reference 1st floor weixin_45903952 response:
data can use the code form to? Dozen figures also get soon

Data is generated, casually could transform

CodePudding user response:

 
The import pandas as pd
The import numpy as np
Import pandas. IO. Formats. Excel # set the format to use
The import xlsxwriter # set the format to use, PIP install xlsxwriter

Chengji=[[" a ", 95, 100, 99], [" a ", 98, 99, 100], [" a ", 95, 98, 88],
[" b ", 98, 97, 87], [" b ", 90, 96, 85], [" b ", 94, 93, 91], [" a ", 99, 93, 91]]

Data=https://bbs.csdn.net/topics/pd.DataFrame (chengji, columns=[' categories', "language", 'mathematics',' political '])
Print (data index, data. The columns) # vertical sequence, cross headings
Print (" * * "50," raw data ")

Print (data)
Data1=data. Set_index (' categories')
Print (data1)
# data1=data. Groupby (' categories') # a single group, available ([...] [...]. ) more columns group
# data2=data1 [' language '] agg ([np sum, np. Mean])
50 # print (" * * ", "Chinese, after using a classification NP sum, average")
# print (data2)
Lb=set (data) [r]. 'categories' tolist ())
Print (lb)

Data2=pd. DataFrame ()
For LBX in lb:
Nr=data1 [data1. Index==LBX] [r]. "Chinese" tolist ()
For num, NRX enumerate in (nr) :
Data2. Loc [num, LBX]=NRX
Print (data2)

CodePudding user response:

 import pandas as pd 

Data=https://bbs.csdn.net/topics/[[' A ', 329119], [' A ', 303068], [' A ', 282649], [' B ', 170843], [' B ', 147040], [' B ', 141867], [' B ', 119436], [' C ', 110657], [' C ', 106842], [' C ', 100016], [' C ', 106842], [' C ', 89662]]

Df=pd DataFrame (data=https://bbs.csdn.net/topics/data, columns=[' Name 'and' data '])
B=df [' Name ']. Unique ()
D={}
For I in range (0, len (b)) :
D [b] [I]=df. Loc [df. Name==b [I], 'Data']. Reset_index (drop=True)
Result=pd. DataFrame (d, the columns=b)
Print (result)
  • Related