Here is a generic code representing what is happening in my script:
import pandas as pd
import numpy as np
dic = {}
for i in np.arange(0,10):
dic[str(i)] = df = pd.DataFrame(np.random.randint(0,1000,size=(5000, 20)),
columns=list('ABCDEFGHIJKLMNOPQRST'))
df_out = pd.DataFrame(index = df.index)
for i in np.arange(0,10):
df_out['A_' str(i)] = dic[str(i)]['A'].astype('int')
df_out['D_' str(i)] = dic[str(i)]['D'].astype('int')
df_out['H_' str(i)] = dic[str(i)]['H'].astype('int')
df_out['I_' str(i)] = dic[str(i)]['I'].astype('int')
df_out['M_' str(i)] = dic[str(i)]['M'].astype('int')
df_out['O_' str(i)] = dic[str(i)]['O'].astype('int')
df_out['Q_' str(i)] = dic[str(i)]['Q'].astype('int')
df_out['R_' str(i)] = dic[str(i)]['R'].astype('int')
df_out['S_' str(i)] = dic[str(i)]['S'].astype('int')
df_out['T_' str(i)] = dic[str(i)]['T'].astype('int')
df_out['C_' str(i)] = dic[str(i)]['C'].astype('int')
You will notice that as soon as df_out (output) numbers of inseted columns exceed 100 I get the following warning:
PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling frame.insert
many times, which has poor performance. Consider using pd.concat instead
The question is how could I use:
pd.concat()
And still have the custom column name that depens on the dictionary key ?
IMPORTANT: I still would like to keep a specific column selections, not all of them. Like in the example: A, D , H , I etc...
SPECIAL EDIT (based on Corralien's answer)
cols = {'A': 'float',
'D': 'bool'}
out = pd.DataFrame()
for c, df in dic.items():
for col, ftype in cols.items():
out = pd.concat([out,df[[col]].add_suffix(f'_{c}')],
axis=1).astype(ftype)
Many thanks for your help !
CodePudding user response:
You can use a comprehension with pd.concat
:
cols = {'A': 'float', 'D': 'bool'}
out = pd.concat([df[cols].astype(cols).add_prefix(f'{k}_')
for k, df in dic.items()], axis=1)
print(out)
# Output:
0_A 0_D 1_A 1_D 2_A 2_D 3_A 3_D
0 116.0 True 396.0 True 944.0 True 398.0 True
1 128.0 True 102.0 True 561.0 True 70.0 True
2 982.0 True 613.0 True 822.0 True 246.0 True
3 830.0 True 366.0 True 861.0 True 906.0 True
4 533.0 True 741.0 True 305.0 True 874.0 True
CodePudding user response:
Use concat
with flatten MultiIndex
in map
:
cols = ['A','D']
df_out = pd.concat({k: v[cols] for k, v in dic.items()}, axis=1).astype('int')
df_out.columns = df_out.columns.map(lambda x: f'{x[1]}_{x[0]}')
print (df_out)
A_0 D_0 A_1 D_1 A_2 D_2 A_3 D_3
0 116 341 396 502 944 483 398 839
1 128 621 102 70 561 656 70 169
2 982 44 613 775 822 379 246 25
3 830 987 366 481 861 632 906 676
4 533 349 741 410 305 422 874 19