Need help on the below nested dictionary and I want to convert this to a pandas Data Frame
Structure type :
DS = [{ 'Outer_key1.0' : [{ 'key1.0': 'data' , 'key2.0': 'data' , 'key3.0': 'data } ,
{ 'key1.1': 'data' , 'key2.1': 'data' , 'key3.1': 'data } ,
{ 'key1.2': 'data' , 'key2.2': 'data' , 'key3.3': 'data } ,]
'Outer key2.0': 'data' ,
'Outer Key3.0': 'data' }]
[{ 'Outer_key1.1' : [{ 'key1.0': 'data' , 'key2.0': 'data' , 'key3.0': 'data } ,
{ 'key1.1': 'data' , 'key2.1': 'data' , 'key3.1': 'data } ,
{ 'key1.2': 'data' , 'key2.2': 'data' , 'key3.3': 'data } ,]
'Outer key2.1': 'data' ,
'Outer Key3.1': 'data' }]
Actual data model as mentioned below
[{'datapoints': [{'statistic': 'Minimum', 'timestamp': '2021-08-31 06:50:00.000000', 'value': 59.03},{'statistic': 'Minimum', 'timestamp': '2021-08-18 02:50:00.000000', 'value': 59.37}, {'statistic': 'Minimum', 'timestamp': '2021-08-24 16:50:00.000000', 'value': 58.84},...],'metric': 'VolumeIdleTime', 'unit': 'Seconds'}]
cc= pd.Series(DS).apply(lambda x : pd.Series({ k: v for y in x for k, v in y.items() }))
CodePudding user response:
IIUC what you need is json_normalize
. Set datapoints
as record_path
and metric
and unit
as meta
:
data = [{'datapoints': [{'statistic': 'Minimum', 'timestamp': '2021-08-31 06:50:00.000000', 'value': 59.03},{'statistic': 'Minimum', 'timestamp': '2021-08-18 02:50:00.000000', 'value': 59.37}, {'statistic': 'Minimum', 'timestamp': '2021-08-24 16:50:00.000000', 'value': 58.84}],'metric': 'VolumeIdleTime', 'unit': 'Seconds'}]
df = pd.json_normalize(data, record_path="datapoints", meta=["metric", "unit"])
print(df)
Output:
statistic timestamp value metric unit
0 Minimum 2021-08-31 06:50:00.000000 59.03 VolumeIdleTime Seconds
1 Minimum 2021-08-18 02:50:00.000000 59.37 VolumeIdleTime Seconds
2 Minimum 2021-08-24 16:50:00.000000 58.84 VolumeIdleTime Seconds