I have a dataframe (sy2.1) with a column (Vannstand2.cm) containing both positive and negative values of water level. I want to separate the negative and positive values into two new columns, whilst still keeping the original column. I have tried to mutate the negative values using this code:
sy2.1 %>%
group_by(Vannstand2.cm) %>%
mutate(Vannstand2_neg=case_when(Vannstand2.cm<0.0))
That didnt work, the error complained about negative values even though I specifically ask to only move everything below 0.0. I have also tried several other codes, but nothing seems to work..
Are there any other codes for this issue?
CodePudding user response:
either use if_else:
sy2.1 %>%
group_by(Vannstand2.cm) %>%
mutate(Vannstand2_neg = if_else(Vannstand2.cm < 0.0, 0, NA))
or with case_when
sy2.1 %>%
group_by(Vannstand2.cm) %>%
mutate(Vannstand2_neg = case_when(Vannstand2.cm < 0.0 ~ 0))
CodePudding user response:
Here's a solution using tidyr::separate
:
sy2.1 %>% tidyr::separate(col = Vannstand2.cm, sep = "(?=-)",
into = c("Vannstand2Positive","Vannstand2Negative"),
convert = T, remove = F)
"(?=-)"
separates the column by -
and keeps it on the right column (see here for more), and remove = F
keeps the original column.
An example with toy data:
df <- data.frame(col1 = -10:10)
tidyr::separate(df, col = col1, sep = "(?=-)", into = c("positive","negative"),
convert = T, remove = F)
Output
a positive negative
1 -10 NA -10
2 -9 NA -9
3 -8 NA -8
4 -7 NA -7
5 -6 NA -6
6 -5 NA -5
7 -4 NA -4
8 -3 NA -3
9 -2 NA -2
10 -1 NA -1
11 0 0 NA
12 1 1 NA
13 2 2 NA
14 3 3 NA
15 4 4 NA
16 5 5 NA
17 6 6 NA
18 7 7 NA
19 8 8 NA
20 9 9 NA
21 10 10 NA