I want to write a custom layer that applies a dense layer and then some specified functions to the output of that computation. I want to specify the functions that are applied to the individual outputs in a list, such that I can easily change them.
I'm trying to apply the functions inside a tf.while_loop
, but I don't know how to access and write to the individual elements of dense_output_nodes
.
dense_output_nodes[i] = ...
doesn't work as it tells me that
TypeError: 'Tensor' object does not support item assignment
So I tried to tf.unstack
before, which is the code below, but now when creating the layer with hidden_1 = ArithmeticLayer(unit_types=['id', 'sin', 'cos'])(inputs)
, I get the error that
TypeError: list indices must be integers or slices, not Tensor
because apparently TensorFlow converts i
from tf.constant
to tf.Tensor
.
By now, I'm really struggling to see ways I can fix this. Is there some way I can get this to work?
Or should I build the whole ArithmeticLayer
as a combination of a Dense layer and a Lambda layer applying the custom functions?
class ArithmeticLayer(layers.Layer):
# u = number of units
def __init__(self, name=None, regularizer=None, unit_types=['id', 'sin', 'cos']):
self.regularizer=regularizer
super().__init__(name=name)
self.u = len(unit_types)
self.u_types = unit_types
def build(self, input_shape):
self.w = self.add_weight(shape=(input_shape[-1], self.u),
initializer='random_normal',
regularizer=self.regularizer,
trainable=True)
self.b = self.add_weight(shape=(self.u,),
initializer='random_normal',
regularizer=self.regularizer,
trainable=True)
def call(self, inputs):
# get the output nodes of the dense layer as a list
dense_output_nodes = tf.matmul(inputs, self.w) self.b
dense_output_list = tf.unstack(dense_output_nodes, axis=1)
# apply the function units
i = tf.constant(0)
def c(i):
return tf.less(i, self.u)
def b(i):
dense_output_list[i] = tf.cond(self.u_types[i] == 'sin',
lambda: tf.math.sin(dense_output_list[i]),
lambda: dense_output_list[i]
)
dense_output_list[i] = tf.cond(self.u_types[i] == 'cos',
lambda: tf.math.cos(dense_output_list[i]),
lambda: dense_output_list[i]
)
return (tf.add(i, 1), )
[i] = tf.while_loop(c, b, [i])
final_output_nodes = tf.stack(dense_output_list, axis=1)
return final_output_nodes
Thanks for any suggestions!
CodePudding user response:
Using tf.tensor_scatter_nd_update
should do the trick if you want to apply certain functions column-wise across samples in a batch. Here is an example working in eager execution and graph mode:
import tensorflow as tf
class ArithmeticLayer(tf.keras.layers.Layer):
# u = number of units
def __init__(self, name=None, regularizer=None, unit_types=['id', 'sin', 'cos']):
self.regularizer=regularizer
super().__init__(name=name)
self.u_types = tf.constant(unit_types)
self.u_shape = tf.shape(self.u_types)
def build(self, input_shape):
self.w = self.add_weight(shape=(input_shape[-1], self.u_shape[0]),
initializer='random_normal',
regularizer=self.regularizer,
trainable=True)
self.b = self.add_weight(shape=(self.u_shape[0],),
initializer='random_normal',
regularizer=self.regularizer,
trainable=True)
def call(self, inputs):
dense_output_nodes = tf.matmul(inputs, self.w) self.b
d_shape = tf.shape(dense_output_nodes)
i = tf.constant(0)
c = lambda i, d: tf.less(i, self.u_shape[0])
def b(i, d):
d = tf.cond(unit_types[i] == 'sin',
lambda: tf.tensor_scatter_nd_update(d, tf.stack([tf.range(d_shape[0]), tf.repeat([i], d_shape[0])], axis=1), tf.math.sin(d[:, i])),
lambda: d)
d = tf.cond(unit_types[i] == 'cos',
lambda: tf.tensor_scatter_nd_update(d, tf.stack([tf.range(d_shape[0]), tf.repeat([i], d_shape[0])], axis=1), tf.math.cos(d[:, i])),
lambda: d)
return tf.add(i, 1), d
_, dense_output_nodes = tf.while_loop(c, b, loop_vars=[i, dense_output_nodes])
return dense_output_nodes
x = tf.random.normal((4, 3))
inputs = tf.keras.layers.Input((3,))
arithmetic = ArithmeticLayer()
outputs = arithmetic(inputs)
model = tf.keras.Model(inputs, outputs)
model.compile(optimizer='adam', loss='mse')
model.fit(x, tf.random.normal((4, 3)), batch_size=2)
2/2 [==============================] - 3s 11ms/step - loss: 1.4259
<keras.callbacks.History at 0x7fe50728c850>
CodePudding user response:
If you plan to use a different datastructure then try this.
import tensorflow as tf
i = tf.constant(0)
u_types = ["sin","cos"]
u_types_ta = tf.TensorArray(dtype=tf.string,size=1, dynamic_size=True,clear_after_read=False)
for i in range(0, len(u_types)):
u_types_ta = u_types_ta.write(i, u_types[i])
u = len(u_types)
dense_output_list = [1.,2.]
dense_output_ta = tf.TensorArray(dtype=tf.float32,size=1, dynamic_size=True,clear_after_read=False)
for i in range(0, len(dense_output_list)):
dense_output_ta = dense_output_ta.write(i, dense_output_list[i])
ta = tf.TensorArray(dtype=tf.float32,size=1, dynamic_size=True,clear_after_read=False)
def c(i,_):
return tf.less(i, u)
def b(i,ta):
ta.write(i, tf.cond(u_types_ta.read(i) == 'sin',
lambda: tf.math.sin(dense_output_ta.read(i)),
lambda: dense_output_ta.read(i)
))
ta.write(i, tf.cond(u_types_ta.read(i) == 'cos',
lambda: tf.math.cos(dense_output_ta.read(i)),
lambda: dense_output_ta.read(i)
))
return (tf.add(i, 1),ta)
i,_ = tf.while_loop(c, b, [i,ta])
print(ta.stack())