I am new to Python and I have a nested dictionary for which I want to normalize the values of the dictionary. For example:
nested_dictionary={'D': {'D': '0.33', 'B': '0.17', 'C': '0.00', 'A': '0.17', 'K': '0.00', 'J': '0.03'}, 'A': {'A': '0.50', 'K': '0.00', 'J': '0.08'}}
And I would like to get the normalization as
Normalized_result={'D': {'D': '0.47', 'B': '0.24', 'C': '0.00', 'A': '0.24', 'K': '0.00', 'J': '0.04'}, 'A': {'A': '0.86', 'K': '0.00', 'J': '0.14'}}
I have seen the example in Normalizing dictionary values which only for one dictionary but I want to go further with nested one. I have tried to flatten the nested_dictionary and apply the normalization as
import flatdict
d = flatdict.FlatDict(nested_dictionary, delimiter='_')
dd=dict(d)
newDict = dict(zip(dd.keys(), [float(value) for value in dd.values()]))
def normalize(d, target=1.0):
global factor
raw = sum(d.values())
print(raw)
if raw==0:
factor=0
#print('ok')
else:
# print('kok')
factor = target/raw
return {key:value*factor for key,value in d.items()}
normalize(newDict)
And I get the result as
{'D_D': 0.2578125,
'D_B': 0.1328125,
'D_C': 0.0,
'D_A': 0.1328125,
'D_K': 0.0,
'D_J': 0.023437499999999997,
'A_A': 0.39062499999999994,
'A_K': 0.0,
'A_J': 0.06249999999999999}
But what I want is the Normalized_result as above Thanks in advance.
CodePudding user response:
- Turn the string-values in your inner dicts into floats.
- Take one of the solutions from the the duplicate, for example
really_safe_normalise_in_place
. - Use the solution on each dict.
Example:
d = {'D': {'D': '0.33', 'B': '0.17', 'C': '0.00', 'A': '0.17', 'K': '0.00', 'J': '0.03'}, 'A': {'A': '0.50', 'K': '0.00', 'J': '0.08'}}
d = {k: {kk: float(vv) for kk, vv in v.items()} for k, v in d.items()}
for v in d.values():
really_safe_normalise_in_place(v)
CodePudding user response:
This code would do:
def normalize(d, target=1.0):
raw = sum(float(number) for number in d.values())
factor = (target/raw if raw else 0)
return {key: f'{float(value)*factor:.2f}' for key, value in d.items()}
{key: normalize(dct) for key, dct in nested_dictionary.items()}
CodePudding user response:
nested_dictionary = {'D': {'D': '0.33', 'B': '0.17', 'C': '0.00', 'A': '0.17', 'K': '0.00', 'J': '0.03'},
'A': {'A': '0.50', 'K': '0.00', 'J': '0.08'}}
In this example, your dict values are str type, so we need to convert to float:
nested_dictionary = dict([b, dict([a, float(x)] for a, x in y.items())] for b, y in nested_dictionary.items())
nested_dictionary
{'D': {'D': 0.33, 'B': 0.17, 'C': 0.0, 'A': 0.17, 'K': 0.0, 'J': 0.03},
'A': {'A': 0.5, 'K': 0.0, 'J': 0.08}}
The function below is adapted from the link you provided. It loops through the dictionaries, calculates the factor and updates the values inplace.
for _, d in nested_dictionary.items():
factor = 1.0/sum(d.values())
for k in d:
d[k] = d[k] * factor
nested_dictionary
{'D': {'D': 0.47142857142857136,
'B': 0.24285714285714285,
'C': 0.0,
'A': 0.24285714285714285,
'K': 0.0,
'J': 0.04285714285714285},
'A': {'A': 0.8620689655172414, 'K': 0.0, 'J': 0.13793103448275865}}
If you need to convert back to str
, use the function below:
nested_dictionary = dict([b, dict([a, "{:.2f}".format(x)] for a, x in y.items())] for b, y in nested_dictionary.items())
nested_dictionary
{'D': {'D': '0.47',
'B': '0.24',
'C': '0.00',
'A': '0.24',
'K': '0.00',
'J': '0.04'},
'A': {'A': '0.86', 'K': '0.00', 'J': '0.14'}}