This is my code
import pandas as pd
import numpy as np
from sklearn import preprocessing
import matplotlib.pyplot as plt
df=pd.read_excel(r"C:\Users\Action\Downloads\Python\Practice_Data\sorted_data v2.xlsx")
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import seaborn as sns
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
import statsmodels.api as sm
#name the dependent variable
y = df['public health care services']
#name the independent variables
x = df[['NGO services', 'reason for migration', ' Sex', 'Education Level', 'Curernt Employment status', ' Monthly Income']]
#run the model
logit_model=sm.Logit(y,x)
result=logit_model.fit()
print(result.summary2())
AME = logit_model.get_margeff(at='overall', method='dydx', atexog=None, dummy=False, count=False)
print(AME.summary())
I am receiving the error 'Logit' object has no attribute 'get_margeff'
Does anyone know how to compute the marginal effect in python?
CodePudding user response:
Try this:
logit_model=sm.Logit(y,x).fit()
print(logit_model.summary2())
AME = logit_model.get_margeff(at='overall', method='dydx', atexog=None, dummy=False, count=False)
print(AME.summary())
CodePudding user response:
I figured out the answer This is the code
AME = result.get_margeff(at='overall', method='dydx', atexog=None, dummy=False, count=False)
#AME = logit_model.get_margeff(at = "overall", method = "dydx")
print(AME.summary())