Code:
from datetime import date
from datetime import timedelta
from nsepy import get_history
import pandas as pd
end1 = date.today()
start1 = end1 - timedelta(days=25)
exp_date1 = date(2022,8,25)
exp_date2 = date(2022,9,29)
# stock = ['HDFCLIFE']
stock = ['RELIANCE','HDFCBANK','INFY','ICICIBANK','HDFC','TCS','KOTAKBANK','LT','SBIN','HINDUNILVR','AXISBANK',
'ITC','BAJFINANCE','BHARTIARTL','ASIANPAINT','HCLTECH','MARUTI','TITAN','BAJAJFINSV','TATAMOTORS',
'TECHM','SUNPHARMA','TATASTEEL','M&M','WIPRO','ULTRACEMCO','POWERGRID','HINDALCO','NTPC','NESTLEIND',
'GRASIM','ONGC','JSWSTEEL','HDFCLIFE','INDUSINDBK','SBILIFE','DRREDDY','ADANIPORTS','DIVISLAB','CIPLA',
'BAJAJ-AUTO','TATACONSUM','UPL','BRITANNIA','BPCL','EICHERMOT','HEROMOTOCO','COALINDIA','SHREECEM','IOC']
target_stocks = []
# oi_change = []
for stock in stock:
stock_jan = get_history(symbol=stock,
start=start1,
end=end1,
futures=True,
expiry_date=exp_date1)
stock_feb = get_history(symbol=stock,
start=start1,
end=end1,
futures=True,
expiry_date=exp_date2)
delivery_per_age = get_history(symbol=stock,
start=start1,
end=end1)
symbol_s = get_history(symbol=stock,
start=start1,
end=end1)
oi_combined = pd.concat([stock_jan['Change in OI'] stock_feb['Change in OI']])
total_oi = pd.concat([stock_jan['Open Interest'] stock_feb['Open Interest']])
delivery_vol = pd.concat([delivery_per_age['Deliverable Volume']])
# delivery_per = pd.concat([delivery_per_age['