I need to convert np arrays (short) of tuples to np arrays of ints.
The most obvious method doesn't work:
# array_of_tuples is given, this is just an example:
array_of_tuples = np.zeros(2, dtype=object)
array_of_tuples[0] = 1,2
array_of_tuples[1] = 2,3
np.array(array_of_tuples, dtype=int)
ValueError: setting an array element with a sequence.
CodePudding user response:
It looks like placing the tuples into a pre-allocated buffer of fixed size and dtype is the way to go. It seems to avoid a lot of the overhead associated with computing sizes, raggedness and dtype.
Here are some slower alternatives and a benchmark:
You can cheat and create a dtype with the requisite number of fields, since numpy supports conversion of tuples to custom dtypes:
dt = np.dtype([('', int) for _ in range(len(array_of_tuples[0]))]) res = np.empty((len(array_of_tuples), len(array_of_tuples[0])), int) res.view(dt).ravel()[:] = array_of_tuples
You can stack the array:
np.stack(array_of_tuples, axis=0)
Unfortunately, this is even slower than the other proposed methods.
Pre-allocation does not help much:
res = np.empty((len(array_of_tuples), len(array_of_tuples[0])), int) np.stack(array_of_tuples, out=res, axis=0)
Trying to cheat using
np.concatenate
, which allows you to specify the output dtype does not help much either:np.concatenate(array_of_tuples, dtype=int).reshape(len(array_of_tuples), len(array_of_tuples[0]))
And neither does pre-allocating the array:
res = np.empty((len(array_of_tuples), len(array_of_tuples[0])), int) np.concatenate(array_of_tuples, out=res.ravel())
You can also try to do the concatenation in python space, which is slow too:
np.array(sum(array_of_tuples, start=()), dtype=int).reshape(len(array_of_tuples), len(array_of_tuples[0]))
OR
np.reshape(np.sum(array_of_tuples), (len(array_of_tuples), len(array_of_tuples[0])))
array_of_tuples = np.empty(100, dtype=object)
for i in range(len(array_of_tuples)):
array_of_tuples[i] = tuple(range(i, i 100))
%%timeit
res = np.empty((len(array_of_tuples), len(array_of_tuples[0])), int)
for i, res[i] in enumerate(array_of_tuples):
pass
305 µs ± 8.55 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
dt = np.dtype([('', 'int',) for _ in range(100)])
%%timeit
res = np.empty((100, 100), int)
res.view(dt).ravel()[:] = array_of_tuples
334 µs ± 5.59 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit np.array(array_of_tuples.tolist())
478 µs ± 12.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%%timeit
res = np.empty((100, 100), int)
np.concatenate(array_of_tuples, out=res.ravel())
500 µs ± 2.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit np.concatenate(array_of_tuples, dtype=int).reshape(100, 100)
504 µs ± 7.72 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%%timeit
res = np.empty((100, 100), int)
np.stack(array_of_tuples, out=res, axis=0)
557 µs ± 25.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit np.stack(array_of_tuples, axis=0)
577 µs ± 6.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit np.array(sum(array_of_tuples, start=()), dtype=int).reshape(100, 100)
1.06 ms ± 11.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit np.reshape(np.sum(array_of_tuples), (100, 100))
1.26 ms ± 24.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)