Say I have 2 list columns like below:
group1 = [['John', 'Mark'], ['Ben', 'Johnny'], ['Sarah', 'Daniel']]
group2 = [['Aya', 'Boa'], ['Mab', 'Johnny'], ['Sarah', 'Peter']]
df = pd.DataFrame({'group1':group1, 'group2':group2})
I want to compare the two list columns and remove the list elements from group1
if they are present in group2
. So expected results for above:
group1 group2
['John', 'Mark'] ['Aya', 'Boa']
['Ben'] ['Mab', 'Johnny']
['Daniel'] ['Sarah', 'Peter']
How can I do this? I have tried this:
df['group1'] = [[name for name in df['group1'] if name not in df['group2']]]
But got errror:
TypeError: unhashable type: 'list'
Please help.
CodePudding user response:
You need to zip
the two Series. I'm using a set
here for efficiency (this is not critical if you have only a few items per list):
df['group1'] = [[x for x in a if x not in S]
for a, S in zip(df['group1'], df['group2'].apply(set))]
Output:
group1 group2
0 [John, Mark] [Aya, Boa]
1 [Ben] [Mab, Johnny]
2 [Daniel] [Sarah, Peter]
CodePudding user response:
You can use set difference:
df.apply(lambda x: set(x['group1']).difference(x['group2']), axis=1)
Output:
0 {John, Mark}
1 {Ben}
2 {Daniel}
dtype: object
To get lists you can add .apply(list)
at the end.
CodePudding user response:
you can use a loop in lambda function:
df['group1']=df[['group1','group2']].apply(lambda x: [i for i in x['group1'] if i not in x['group2']],axis=1)
print(df)
'''
group1 group2
0 [John, Mark] [Aya, Boa]
1 [Ben] [Mab, Johnny]
2 [Daniel] [Sarah, Peter]
'''