As the title suggest, I have seen some user mentioned that .lm.fit()
functions has an advantage of more speed than a regular lm()
, but when i look deeper at .lm.fit()
in help, it is supposed to be a fitter functions, it returns a set of list instead of a model, which makes me to think is it still possible to extract components like R squared, Adj R Squared, and lastly do a predict()
out of it?
Below is sample data and executions:
test_dat <- data.frame(y = rnorm(780, 20, 10))
for(b in 1:300){
name_var <- paste0("x",b)
test_dat[[name_var]] <- rnorm(780, 0.01 * b, 5)
}
tic()
obj_lm <- lm(y ~ ., data = test_dat)
print(class(obj_lm))
print(summary(obj_lm)$r.squared)
print(summary(obj_lm)$adj.r.squared)
predict(obj_lm)
toc() #approximately 0.4 seconds
tic()
datm <- as.matrix(test_dat)
obj_lm_fit <- .lm.fit(cbind(1,datm[,-1]), datm[,1])
print(class(obj_lm_fit))
toc() #approximately 0.2 seconds
CodePudding user response:
Functions predict
and resid
are generic and since .lm.fit
returns an object of class "list"
, all you have to do is to write methods implementing the definitions of what you want. Below are methods to compute fitted values, residuals and R^2.
set.seed(2023) # make the results reproducible
test_dat <- data.frame(y = rnorm(780, 20, 10))
for(b in 1:300){
name_var <- paste0("x",b)
test_dat[[name_var]] <- rnorm(780, 0.01 * b, 5)
}
obj_lm <- lm(y ~ ., data = test_dat)
datm <- as.matrix(test_dat)
obj_lm_fit <- .lm.fit(cbind(1,datm[,-1]), datm[,1])
#------------------------------------------------------------------------
# the methods for objects of class "list"
#
fitted.list <- function(object, X) {
X %*% object$coefficients
}
resid.list <- residuals.list <- function(object, X, y) {
y_fitted <- fitted(object, X)
y - y_fitted
}
rsquared <- function(x, ...) UseMethod("rsquared")
rsquared.default <- function(x, ...) {
summary(x)$r.squared
}
rsquared.list <- function(object, X, y) {
e <- resid.list(object, X, y)
1 - sum(e^2)/sum( (y - mean(y))^2 )
}
rsquared(obj_lm_fit, cbind(1,datm[,-1]), datm[,1])
#> [1] 0.3948863
rsquared(obj_lm)
#> [1] 0.3948863
Created on 2023-01-03 with reprex v2.0.2