I have the below pyspark dataframe.both are string columns.
time additional_time_in_mins
11:00:00 60
13:00:00 60
14:00:00 30
I have to add the minutes in the additional time column to actual time and create an output as below in pyspark.
Expected output:
new_time
12:00:00
14:00:00
14:30:00
Is there a way to do this in pyspark
CodePudding user response:
One simple option is converting time
column to bigint in seconds using unix_timestamp
function, add the minutes (minutes * 60s) and then cast the result back to timestamp.
Lastly, convert to hourly format.
df = df.withColumn('new_time', F.date_format((F.unix_timestamp('time', 'HH:mm:ss') F.col('additional_time_in_mins')*60).cast('timestamp'), 'HH:mm:ss'))
df.show()
-------- ----------------------- --------
| time|additional_time_in_mins|new_time|
-------- ----------------------- --------
|11:00:00| 60|12:00:00|
|13:00:00| 60|14:00:00|
|14:00:00| 30|14:30:00|
-------- ----------------------- --------
CodePudding user response:
Other way to do this using UDF:
from pyspark.sql.functions import date_format, col
data = [
("11:00:00", "60"),
("13:00:00", "60"),
("14:00:00", "30"),
]
df = spark.createDataFrame(data, ["time", "additional_time_in_mins"])
df.show()
UDF logic to sum time
from pyspark.sql.types import StringType, IntegerType
from pyspark.sql.functions import udf
@udf(returnType=StringType())
def sum_time(var_time, additional_time):
# Converting var_time string to time
var_time = datetime.strptime(var_time, '%H:%M:%S').time()
#Using date to utitlise the time function
combined_time = (datetime.combine(date.today(), var_time) timedelta(minutes=additional_time)).time()
return str(combined_time)
Using UDF to get the final output:
df = df.withColumn(
"total_time", sum_time(col("time"), col("additional_time_in_mins").cast(IntegerType()))
)
display(df)