I have a dataframe like below. How can I get it into a nested dictionary like
Guest GuestCode ProductName Quantity Invoice No
0 Maria NaN Pro Plus Cream 2 OBFL22511
1 Maria NaN Soothe Stress Cream 1 OBFL22511
2 Sanchez OBFLG3108 Pro Plus Cream 1 OBFL22524
3 Karen OBFLG1600 Soothe Stress Cream 1 OBFL22525
4 Karen OBFLG1600 Pro Plus Cream 1 OBFL22525
I want the dataframe converted into the following dictionary format:
{"Guest": {"GuestCode": {"Invoice No": {"ProductName": Quantity}}}
For example:
{"Karen": {"OBFLG160": {"OBFL22525": {"Soothe Stress Cream": 1, "Pro Plus Cream": 1}}}
I tried this:
for index, row in df.iterrows():
my_dict[row['Guest']] = {row['GuestCode']: {row['Invoice No']: {row['ProductName']}}}
But it does not list all the items if a guest has multiple products.
I also tried and played around with this, but don't really understand dictionary comprehension:
d = {k: v.groupby('GuestCode')['Invoice No','ProductName' , 'Quantity'].apply(list).to_dict() for k, v in df.groupby('Guest')}
CodePudding user response:
my_dict = {k[0]: {k[1]: {k[2]: {p: q for p, q in row[['ProductName', 'Quantity']].values}}} for k, row in df.fillna('<NA>').groupby(['Guest', 'GuestCode', 'Invoice No'])}
Output:
>>> my_dict
{'Karen': {'OBFLG1600': {'OBFL22525': {'Soothe Stress Cream': 1, 'Pro Plus Cream': 1}}},
'Maria': {'<NA>': {'OBFL22511': {'Pro Plus Cream': 2, 'Soothe Stress Cream': 1}}},
'Sanchez': {'OBFLG3108': {'OBFL22524': {'Pro Plus Cream': 1}}}}
>>> import json
>>> print(json.dumps(my_dict, indent=2))
{
"Karen": {
"OBFLG1600": {
"OBFL22525": {
"Soothe Stress Cream": 1,
"Pro Plus Cream": 1
}
}
},
"Maria": {
"<NA>": {
"OBFL22511": {
"Pro Plus Cream": 2,
"Soothe Stress Cream": 1
}
}
},
"Sanchez": {
"OBFLG3108": {
"OBFL22524": {
"Pro Plus Cream": 1
}
}
}
}