Here is a snippet of my code:
library(gutenbergr)
library(tm)
Alice <- gutenberg_download(c(11))
Alice <- Corpus(VectorSource(Alice))
cleanAlice <- tm_map(Alice, removeWords, stopwords('english'))
cleanAlice <- tm_map(cleanAlice, removeWords, c('Alice'))
cleanAlice <- tm_map(cleanAlice, tolower)
cleanAlice <- tm_map(cleanAlice, removePunctuation)
cleanAlice <- tm_map(cleanAlice, stripWhitespace)
dtm1 <- TermDocumentMatrix(cleanAlice)
dtm1
But then I receive the following error:
<<TermDocumentMatrix (terms: 3271, documents: 2)>>
Non-/sparse entries: 3271/3271
Sparsity : 50%
Error in nchar(Terms(x), type = "chars") :
invalid multibyte string, element 12
How should I deal with this? Should I convert the corpus into a plain text document first? Is there something wrong with the text format of the book?
CodePudding user response:
Gutenbergr returns a data.frame, not a text vector. You just need to slightly adjust your code and it should work fine. Instead of VectorSource(Alice)
you need VectorSource(Alice$text)
library(gutenbergr)
library(tm)
# don't overwrite your download when you are testing
Alice <- gutenberg_download(c(11))
# specify the column in the data.frame
Alice_corpus <- Corpus(VectorSource(Alice$text))
cleanAlice <- tm_map(Alice_corpus, removeWords, stopwords('english'))
cleanAlice <- tm_map(cleanAlice, removeWords, c('Alice'))
cleanAlice <- tm_map(cleanAlice, tolower)
cleanAlice <- tm_map(cleanAlice, removePunctuation)
cleanAlice <- tm_map(cleanAlice, stripWhitespace)
dtm1 <- TermDocumentMatrix(cleanAlice)
dtm1
<<TermDocumentMatrix (terms: 3293, documents: 3380)>>
Non-/sparse entries: 13649/11116691
Sparsity : 100%
Maximal term length: 46
Weighting : term frequency (tf)
P.S. you can ignore the warning messages in the code.