I have two dataframes A and B.
Dataframe A has 4 columns with 2 sets of maximum and minimums that I want to use as upper and lower bounds for 2 columns in dataframe B.
latitude = data['y']
longitude = data['x']
upper_lat = coords['lat_max']
lower_lat = coords['lat_min']
upper_lon = coords['long_max']
lower_lon = coords['long_min']
def filter_data_2(filter, upper_lat, lower_lat, upper_lon, lower_lon, lat, lon):
v = filter[(lower_lat <= lat <= upper_lat ) & (lower_lon <= lon <= upper_lon)]
return v
newdata = filter_data_2(data, upper_lat, lower_lat, upper_lon, lower_lon, latitude, longitude)
ValueError: Can only compare identically-labeled Series objects
CodePudding user response:
MWE:
import pandas as pd
a = {'lower_lon': [2,4,6], 'upper_lon': [4,6,10], 'lower_lat': [1,3,5], 'upper_lat': [3,5,7]}
constraints = pd.DataFrame(data=a)
constraints
lower_lon upper_lon lower_lat upper_lat
0 2 4 1 3
1 4 6 3 5
2 6 10 5 7
b = {'lon' : [3, 5, 7, 9, 11, 13, 15], 'lat': [2, 4, 6, 8, 10, 12, 14]}
to_filter = pd.DataFrame(data=b)
to_filter
lon lat
0 3 2
1 5 4
2 7 6
3 9 8
4 11 10
5 13 12
6 15 14
lat = to_filter['lat']
lon = to_filter['lon']
lower_lon = constraints['lower_lon']
upper_lon = constraints['upper_lon']
lower_lat = constraints['lower_lat']
upper_lat = constraints['upper_lat']
v = to_filter[(lower_lat <= lat) & (lat <= upper_lat) & (lower_lon <= lon) & (lon <= upper_lon)]
Expected Results
v
lon lat
0 3 2
1 5 4
2 7 6
CodePudding user response:
The global filter will be the union of the sets of all the contraints, in pandas you could:
v = pd.DataFrame()
for i in constraints.index:
# Current constraints
min_lon, max_lon, min_lat, max_lat = constraints.loc[i, :]
# Apply filter
df = to_filter[ (to_filter.lon>= min_lon & to_filter.lon<= max_lon) & (to_filter.lat>= min_lat & to_filter.lat<= max_lat) ]
# Join in a single df previous and current filter outcome
v= pd.concat( [v, df] )
# Remove duplicates, if any
v = v.drop_duplicates()