I have two sets of dataframe, one is the "gold" one which means that I need to keep all the rows for the gold one after merging. The other one is reference one. Below is a sneak peek of that two dataframe.
gold
doc_name mention id
0 doc_1 US United States
0 doc_1 Georgia Atl
0 doc_1 Bama Selma
0 doc_1 Europe UK
0 doc_2 HSBC HK Bank Central
0 doc_2 NC Charlotte
: : :
: : :
0 doc_n CA San Jose
reference
doc_name text
0 doc_1 The US
0 doc_1 Georgia's Fried Chicken
0 doc_1 Bama Football
0 doc_1 HSBC
0 doc_1 Bank of America
0 doc_1 NC Panthers
0 doc_1 MI Packers
0 doc_1 NC Panthers
: :
: :
0 doc_n CA's apt
I tried to merge those 2 dataframe by using outer join df = pd.merge(gold, reference, right_on = ['doc_name'], left_on =['doc_name'], how = 'outer'
then use contains string in "mention" column to filter out rows under "text" columns but if I do that I will lose rows from the gold dataframe, which I do not want.
The output that I would like to have is like this below
doc_name mention id text
0 doc_1 US United States The US
0 doc_1 Georgia Atl Georgia's Fried Chicken
0 doc_1 Bama Selma Bama Football
0 doc_1 Europe UK Nan
0 doc_2 HSBC HK Bank Central HSBC
0 doc_2 NC Charlotte NC Panthers
: : : :
: : : :
0 doc_n CA San Jose CA's apt
I basically want to keep all the gold dataframe rows, but also want to have the "text" column from the reference dataframe that contains strings from gold's "mention" column. I have been trying to do that but still couldn't find a good way to do so. That will be great if you all have some ideas or suggestions. Thank you so much!
gold raw csv:
doc_name,mention,id
chtb_165.en,Xinhua News Agency,Xinhua News Agency
chtb_165.en,Shanghai,Shanghai
chtb_165.en,HSBC,HSBC
chtb_165.en,China Shipping Mansion,International Ocean Shipping Building
chtb_165.en,Pudong Lujiazui financial trading district,Lujaizui
chtb_165.en,Pudong,Pudong
chtb_165.en,US,United States
chtb_165.en,Citibank,Citibank
chtb_165.en,Hong Kong,Hong Kong
chtb_165.en,Japan,Japan
chtb_165.en,Tokyo Mitsubishi Bank,The Bank of Tokyo-Mitsubishi UFJ
VOA20001129.2000.036,Washington,"Washington, D.C."
VOA20001129.2000.036,Supreme Court,Supreme Court of the United States
VOA20001129.2000.036,Joe O'Grossman,Joel Grossman
VOA20001129.2000.036,Baltimore,Baltimore
VOA20001129.2000.036,Johns Hopkins University,Johns Hopkins University
VOA20001129.2000.036,Lawrence Tribe,Laurence Tribe
VOA20001129.2000.036,Gore,Al Gore
VOA20001129.2000.036,legislature,Florida Legislature
VOA20001129.2000.036,Congress,United States Congress
reference raw csv:
doc_name,text
VOA20001129.2000.036,the Bush
VOA20001129.2000.036,American election
VOA20001129.2000.036,Congress
VOA20001129.2000.036,George W Bush
chtb_165.en,Xinhua News Agency
chtb_165.en,Shanghai
chtb_165.en,HSBC
chtb_165.en,China Shipping
chtb_165.en,Mansion
chtb_165.en,RMB
chtb_165.en,the US
chtb_165.en,"Citibank , Hong Kong"
chtb_165.en,Japan
chtb_165.en,Tokyo Mitsubishi Bank
chtb_165.en,Industrial Bank
chtb_165.en,Branch
chtb_165.en,Chartered Bank
chtb_165.en,BNP
chtb_165.en,Paris
chtb_165.en,Bank
chtb_165.en,Dai-Ichi Kangyo Bank
chtb_165.en,Sanwa Bank
chtb_165.en,Financial Trading
chtb_165.en,District
chtb_165.en,Franklin Templeton
chtb_165.en,Company
chtb_165.en,California
chtb_165.en,US dollars
chtb_165.en,China
chtb_165.en,Asian
chtb_165.en,Securities
chtb_165.en,Building
chtb_165.en,Hong Kong
chtb_165.en,Japan Industrial Bank
chtb_165.en,Holland
chtb_165.en,Belgium
chtb_165.en,Credit Bank
chtb_165.en,Waitan
CodePudding user response:
I have the answer you want here. It generates an "output.csv" which you can read with pandas as a dataframe to give you the expected result.
Here is my "output.csv". The results look odd because your sample input (reference.csv and gold.csv) were a small subset. If you test on your full large input CSVs, you will get a proper output:
doc_name,mention,id,text
VOA20001129.2000.036,Washington,Washington D.C.,
VOA20001129.2000.036,Supreme Court,Supreme Court of the United States,
VOA20001129.2000.036,Joe O'Grossman,Joel Grossman,
VOA20001129.2000.036,Baltimore,Baltimore,
VOA20001129.2000.036,Johns Hopkins University,Johns Hopkins University,
VOA20001129.2000.036,Lawrence Tribe,Laurence Tribe,
VOA20001129.2000.036,Gore,Al Gore,
VOA20001129.2000.036,legislature,Florida Legislature,
VOA20001129.2000.036,Congress,United States Congress,Congress
chtb_165.en,Xinhua News Agency,Xinhua News Agency,Xinhua News Agency
chtb_165.en,Shanghai,Shanghai,Shanghai
chtb_165.en,HSBC,HSBC,HSBC
chtb_165.en,China Shipping Mansion,International Ocean Shipping Building,
chtb_165.en,Pudong Lujiazui financial trading district,Lujaizui,
chtb_165.en,Pudong,Pudong,
chtb_165.en,US,United States,the US
chtb_165.en,Citibank,Citibank,Citibank Hong Kong
chtb_165.en,Hong Kong,Hong Kong,Citibank Hong Kong
chtb_165.en,Japan,Japan,Japan
chtb_165.en,Tokyo Mitsubishi Bank,The Bank of Tokyo-Mitsubishi UFJ,Tokyo Mitsubishi Bank
And finally, here is the code:
from collections import OrderedDict
import inspect
"""
Note: Only works on Python 3.6
"""
class GoldClass:
def __init__(self):
self.mention = []
self.id = []
def retrieve_name(var):
callers_local_vars = inspect.currentframe().f_back.f_locals.items()
return [var_name for var_name, var_val in callers_local_vars if var_val is var][0]
def get_nth_key(dictionary, n):
if n < 0:
n = len(dictionary)
for i, key in enumerate(dictionary.keys()):
if i == n:
return key
raise IndexError("dictionary index out of range")
with open("reference.csv") as reference_file:
reference_list = reference_file.readlines()
with open("gold.csv") as gold_file:
gold_list = gold_file.readlines()
reference_dict = OrderedDict()
for x in range(len(reference_list)):
if x == 0:
continue
reference_list[x] = reference_list[x].strip()
if reference_list[x].count(',') > 1:
temp1 = reference_list[x].split(",")[0]
temp2 = reference_list[x][len(temp1) 1:]
temp2 = temp2.replace(",","").replace('"',"")
reference_list[x] = temp1 "," temp2
try:
reference_dict[reference_list[x].split(",")[0]]
except:
reference_dict[reference_list[x].split(",")[0]] = []
reference_dict[reference_list[x].split(",")[0]].append(reference_list[x].split(",")[1])
for x in range(len(gold_list)):
if x == 0:
continue
gold_list[x] = gold_list[x].strip()
if gold_list[x].count(',') > 2:
temp1 = gold_list[x].split(",")[0]
temp2 = gold_list[x].split(",")[1]
temp3 = gold_list[x][len(temp1) len(temp2) 2:]
temp3 = temp3.replace(",","").replace('"',"")
gold_list[x] = temp1 "," temp2 "," temp3
temp_doc_name = gold_list[x].split(",")[0]
temp_mention = gold_list[x].split(",")[1]
temp_id = gold_list[x].split(",")[2]
temp_index = list(reference_dict.keys()).index(temp_doc_name)
try:
exec("goldclass_" str(temp_index))
except:
exec("goldclass_" str(temp_index) " = GoldClass()")
exec("goldclass_" str(temp_index) ".mention.append(temp_mention)")
exec("goldclass_" str(temp_index) ".id.append(temp_id)")
goldclass_objectlist = []
goldclass_iterator = 0
while True:
try:
exec("goldclass_objectlist.append(goldclass_" str(goldclass_iterator) ")")
goldclass_iterator = goldclass_iterator 1
except:
break
final_lines = []
final_lines.append("doc_name,mention,id,text")
for temp4 in goldclass_objectlist:
final_doc_name = get_nth_key(reference_dict,int(retrieve_name(temp4).split("_")[1]))
for x in range(len(temp4.id)):
final_mention = temp4.mention[x]
final_id = temp4.id[x]
final_text = ""
for y in reference_dict[final_doc_name]:
if final_mention in y:
final_text = y
break
final_lines.append(final_doc_name "," final_mention "," final_id "," final_text)
f = open("output.csv", "w")
for x in final_lines:
f.write(x "\n")
f.close()
CodePudding user response:
Given:
gold.csv
doc_name,mention,id
doc_1,US,United States
doc_1,Georgia,Atl
doc_1,Bama,Selma
doc_1,Europe,UK
doc_2,HSBC,HK Bank Central
doc_2,NC,Charlotte
chtb_165.en,Xinhua News Agency,Xinhua News Agency
chtb_165.en,Shanghai,Shanghai
chtb_165.en,HSBC,HSBC
chtb_165.en,China Shipping Mansion,International Ocean Shipping Building
chtb_165.en,Pudong Lujiazui financial trading district,Lujaizui
chtb_165.en,Pudong,Pudong
chtb_165.en,US,United States
chtb_165.en,Citibank,Citibank
chtb_165.en,Hong Kong,Hong Kong
chtb_165.en,Japan,Japan
chtb_165.en,Tokyo Mitsubishi Bank,The Bank of Tokyo-Mitsubishi UFJ
VOA20001129.2000.036,Washington,"Washington, D.C."
VOA20001129.2000.036,Supreme Court,Supreme Court of the United States
VOA20001129.2000.036,Joe O'Grossman,Joel Grossman
VOA20001129.2000.036,Baltimore,Baltimore
VOA20001129.2000.036,Johns Hopkins University,Johns Hopkins University
VOA20001129.2000.036,Lawrence Tribe,Laurence Tribe
VOA20001129.2000.036,Gore,Al Gore
VOA20001129.2000.036,legislature,Florida Legislature
VOA20001129.2000.036,Congress,United States Congress
reference.csv
doc_name,text
doc_1,The US
doc_1,Georgia's Fried Chicken
doc_1,Bama Football
doc_1,HSBC
doc_1,Bank of America
doc_1,NC Panthers
doc_1,MI Packers
doc_1,NC Panthers
VOA20001129.2000.036,the Bush
VOA20001129.2000.036,American election
VOA20001129.2000.036,Congress
VOA20001129.2000.036,George W Bush
chtb_165.en,Xinhua News Agency
chtb_165.en,Shanghai
chtb_165.en,HSBC
chtb_165.en,China Shipping
chtb_165.en,Mansion
chtb_165.en,RMB
chtb_165.en,the US
chtb_165.en,"Citibank , Hong Kong"
chtb_165.en,Japan
chtb_165.en,Tokyo Mitsubishi Bank
chtb_165.en,Industrial Bank
chtb_165.en,Branch
chtb_165.en,Chartered Bank
chtb_165.en,BNP
chtb_165.en,Paris
chtb_165.en,Bank
chtb_165.en,Dai-Ichi Kangyo Bank
chtb_165.en,Sanwa Bank
chtb_165.en,Financial Trading
chtb_165.en,District
chtb_165.en,Franklin Templeton
chtb_165.en,Company
chtb_165.en,California
chtb_165.en,US dollars
chtb_165.en,China
chtb_165.en,Asian
chtb_165.en,Securities
chtb_165.en,Building
chtb_165.en,Hong Kong
chtb_165.en,Japan Industrial Bank
chtb_165.en,Holland
chtb_165.en,Belgium
chtb_165.en,Credit Bank
chtb_165.en,Waitan
Create a column that looks for those mentions in the text with or |
operator. Then can merge once it matches up the text with what is mentioned.
import pandas as pd
gold = pd.read_csv('C:/test/gold.csv')
reference = pd.read_csv('C:/test/reference.csv')
pat = '|'.join(r"{}".format(x) for x in gold.mention)
reference['mention_test'] = reference.text.str.extract('(' pat ')', expand=False)
df = pd.merge(gold, reference, how='left', left_on= ['doc_name','mention'], right_on=['doc_name','mention_test']).drop('mention_test', axis=1)
Output:
print(df.to_string())
doc_name mention id text
0 doc_1 US United States The US
1 doc_1 Georgia Atl Georgia's Fried Chicken
2 doc_1 Bama Selma Bama Football
3 doc_1 Europe UK NaN
4 doc_2 HSBC HK Bank Central NaN
5 doc_2 NC Charlotte NaN
6 chtb_165.en Xinhua News Agency Xinhua News Agency Xinhua News Agency
7 chtb_165.en Shanghai Shanghai Shanghai
8 chtb_165.en HSBC HSBC HSBC
9 chtb_165.en China Shipping Mansion International Ocean Shipping Building NaN
10 chtb_165.en Pudong Lujiazui financial trading district Lujaizui NaN
11 chtb_165.en Pudong Pudong NaN
12 chtb_165.en US United States the US
13 chtb_165.en US United States US dollars
14 chtb_165.en Citibank Citibank Citibank , Hong Kong
15 chtb_165.en Hong Kong Hong Kong Hong Kong
16 chtb_165.en Japan Japan Japan
17 chtb_165.en Japan Japan Japan Industrial Bank
18 chtb_165.en Tokyo Mitsubishi Bank The Bank of Tokyo-Mitsubishi UFJ Tokyo Mitsubishi Bank
19 VOA20001129.2000.036 Washington Washington, D.C. NaN
20 VOA20001129.2000.036 Supreme Court Supreme Court of the United States NaN
21 VOA20001129.2000.036 Joe O'Grossman Joel Grossman NaN
22 VOA20001129.2000.036 Baltimore Baltimore NaN
23 VOA20001129.2000.036 Johns Hopkins University Johns Hopkins University NaN
24 VOA20001129.2000.036 Lawrence Tribe Laurence Tribe NaN
25 VOA20001129.2000.036 Gore Al Gore NaN
26 VOA20001129.2000.036 legislature Florida Legislature NaN
27 VOA20001129.2000.036 Congress United States Congress Congress