In a sample dataset I have companies with their respective exit_date in that I want to show that company name if one company left in 2018 until the fiscal year ends i need to show the company name after the fiscal year the row should be removed
Company <- c("Nokia","Samsung","Moto","Blue Berry","Vivo","Redmi")
Exit_date <- c(NA, "2019-08-25", "2019-12-31", "2018-12-31","2020-09-15",NA)
data <- data.frame(Company,Exit_date)
data$Exit_date <-as.Date(data$Exit_date,format = "%Y-%m-%d")
Fiscal years:
a = as.Date("2018-04-01")
b = as.Date("2019-04-01")
c = as.Date("2020-04-01")
d = as.Date("2021-04-01")
e = as.Date("2022-04-01")
I tried using if but didn't get any proper output:
if(data$exit_date > a & data$exit_date < b){
data = data[!data$Exit_date,]
}else if (data$exit_date > b & data$exit_date < c){
data = data[!data$Exit_date,]
}else if (data$exit_date > c & data$exit_date < d){
data = data[!data$Exit_date,]
}else if (data$exit_date > d & data$exit_date < e){
data = data[!data$Exit_date,]
}else if (data$Exit_date==NA){
}
Any idea would be appreciated.
CodePudding user response:
library(tidyverse)
Company <- c("Nokia", "Samsung", "Moto", "Blue Berry", "Vivo", "Redmi")
Exit_date <- c(NA, "2019-08-25", "2019-12-31", "2018-12-31", "2020-09-15", NA)
data <- data.frame(Company, Exit_date)
data$Exit_date <- as.Date(data$Exit_date, format = "%Y-%m-%d")
# must be in ascending order
a <- as.Date("2018-04-01")
b <- as.Date("2019-04-01")
c <- as.Date("2020-04-01")
d <- as.Date("2021-04-01")
e <- as.Date("2022-04-01")
data <-
data %>%
as_tibble() %>%
mutate(
left_fiscal = case_when(
Exit_date < a ~ a,
Exit_date < b ~ b,
Exit_date < c ~ c,
Exit_date < d ~ d,
Exit_date < e ~ e
)
)
data
#> # A tibble: 6 x 3
#> Company Exit_date left_fiscal
#> <chr> <date> <date>
#> 1 Nokia NA NA
#> 2 Samsung 2019-08-25 2020-04-01
#> 3 Moto 2019-12-31 2020-04-01
#> 4 Blue Berry 2018-12-31 2019-04-01
#> 5 Vivo 2020-09-15 2021-04-01
#> 6 Redmi NA NA
# remove companies left in fiscal year 2018
data %>%
filter(! left_fiscal == b)
#> # A tibble: 3 x 3
#> Company Exit_date left_fiscal
#> <chr> <date> <date>
#> 1 Samsung 2019-08-25 2020-04-01
#> 2 Moto 2019-12-31 2020-04-01
#> 3 Vivo 2020-09-15 2021-04-01
Created on 2022-02-22 by the reprex package (v2.0.0)
CodePudding user response:
The problem with your if statement is that data$Exit_date
isn't a logical vector so you can't use data[!data$Exit_date,]
to remove the rows.
The other thing is that adding up your if statements : it seems you want only exit date matching a, b, c, d or e (since you're removing everyting in between). But it doesn't seem to be the desired output?
To get the year they left, it's easier if your dates are in a vector : you can add up the conditions (>= to x date) to get the index of the year in your vector like so :
Fiscal_years <- c(
as.Date("2018-04-01"),
as.Date("2019-04-01"),
as.Date("2020-04-01"),
as.Date("2021-04-01"),
as.Date("2022-04-01")
)
data <- within(data,{
Exit_fiscal <- Fiscal_years[rowSums(sapply(Fiscal_years, function(x) Exit_date >= x)) 1]
})
You could also use the library lubridate
to match years :
Fiscal_years <- c(
"2018" = as.Date("2018-04-01"),
"2019" = as.Date("2019-04-01"),
"2020" = as.Date("2020-04-01"),
"2021" = as.Date("2021-04-01"),
"2022" = as.Date("2022-04-01")
)
library(lubridate)
data <- within(data,{
Exit_fiscal <- Fiscal_years[as.character(year(Exit_date) (month(Exit_date) >= 4))]
})
Then to filter :
data <- data[!data$Exit_fiscal %in% Fiscal_years["2019"],]
#> Company Exit_date Exit_fiscal
#> 1 Nokia <NA> <NA>
#> 2 Samsung 2019-08-25 2020-04-01
#> 3 Moto 2019-12-31 2020-04-01
#> 5 Vivo 2020-09-15 2021-04-01
#> 6 Redmi <NA> <NA>
Or if you don't want to keep NA values :
data <- data[which(data$Exit_fiscal != Fiscal_years["2019"]),]
#> Company Exit_date Exit_fiscal
#> 2 Samsung 2019-08-25 2020-04-01
#> 3 Moto 2019-12-31 2020-04-01
#> 5 Vivo 2020-09-15 2021-04-01