Home > Blockchain >  Can we use Pydantic models (Basemodel) directly inside model.predict using FastAPI, if not why?
Can we use Pydantic models (Basemodel) directly inside model.predict using FastAPI, if not why?

Time:04-15

I'm using Pydantic model (Basemodel) with FastAPI and converting the input into a dictionary, and then converting it into a Pandas dataframe to assign it into "model.predict" for Machine Learning Prediction as bellow :

from fastapi import FastAPI
import uvicorn
from pydantic import BaseModel
import pandas as pd
from typing import List

class Inputs(BaseModel):
    f1: float,
    f2: float,
    f3: str

@app.post('/predict')
def predict(features: List[Inputs]):
    output = []

    # loop the list of input features
    for data in features:
         result = {}

         # Convert data into dict() and then into a DataFrame
            data = data.dict()
            df = pd.DataFrame([data])

         # get predictions
            prediction = classifier.predict(df)[0]

         # get probability
            probability = classifier.predict_proba(df).max()

         # assign to dictionary 
            result["prediction"] = prediction
            result["probability"] = probability

         # append dictionary to list (many outputs)
            output.append(result)

    return output

It works fine, I'm just not quite sure if it's optimized or the right way to do it, since I convert the input two times to get the predictions, and I'm not sure if it's gonna work fast in case having a huge number of inputs. Any improvements for this ?! If there's a way (even other than using (Pydantic models) where I can work directly and avoid going through conversions and the loop

CodePudding user response:

First, you should use more descriptive names for your variables/objects. For example:

@app.post('/predict')
def predict(inputs: List[Inputs]):
    for input in inputs:
    # ...

You cannot pass the Pydantic model directly to the predict() function, as it accepts a data array, not a Pydantic model. Available options are listed below.

Option 1

You could use:

prediction = model.predict([[input.f1, input.f2, input.f3]])[0]

Option 2

If you don't wish to use a Pandas DataFrame, as shown in your question, i.e.,

df = pd.DataFrame([input.dict()])
prediction = model.predict(df)[0]

then, you could use the __dict__ method to get the values of all attributes in the model and convert it to a list:

prediction = model.predict([list(input.__dict__.values())])[0]

or, preferably, use the Pydantic's .dict() method:

prediction = model.predict([list(input.dict().values())])[0]

Option 3

You could avoid looping over individual items and calling the predict() function multiple times, by using, instead, the below:

import pandas as pd

df = pd.DataFrame([i.dict() for i in inputs])
prediction = model.predict(df)
probability = model.predict_proba(df)
return {'prediction': prediction.tolist(), 'probability': probability.tolist()}

or (in case you don't wish using Pandas DataFrame):

inputs_list = [list(i.dict().values()) for i in inputs]
prediction = model.predict(inputs_list)
probability = model.predict_proba(inputs_list)
return {'prediction': prediction.tolist(), 'probability': probability.tolist()}
  • Related