So I am following a tutorial for making a dataloader for images (https://github.com/codebasics/deep-learning-keras-tf-tutorial/blob/master/44_tf_data_pipeline/tf_data_pipeline.ipynb).
The full code is something like this:
images_ds = tf.data.Dataset.list_files("path/class/*")
def get_label(file_path):
import os
parts = tf.strings.split(file_path, os.path.sep)
return parts[-2]
## How the tutorial does it
def process_image(file_path):
label = get_label(file_path)
img = tf.io.read_file(file_path)
img = tf.image.decode_jpeg(img)
return img, label
## How I want to do it
def process_image(file_path):
label = get_label(file_path)
img = np.load(file_path)
img = tf.convert_to_tensor(img)
return img, label
train_ds = images_ds.map(process_image)
In the tutorial, the data is a .jpeg. However, my data is a .npy.
Therefore, loading the data with the following code does not work:
img = tf.io.read_file(file_path)
img = tf.image.decode_jpeg(img)
I want to work around this problem, but my solution does not work.
img = np.load(file_path)
img = tf.convert_to_tensor(img)
It does work when I feed the process_image function 1 instance. However, when I use the .map function, I get an error.
Error:
TypeError: expected str, bytes or os.PathLike object, not Tensor
Is there an equivalent function to tf.image.decode_image() for decoding a numpy array and/or can someone help me with my current error?
CodePudding user response:
The comment of @André put me in the right direction. The code below works.
def process_image(file_path):
label = get_label(file_path)
label = np.uint8(label)
img = np.load(file_path)
img = tf.convert_to_tensor(img/255, dtype=tf.float32)
return img , label
train_ds = images_ds.map(lambda item: tf.numpy_function(
process_image, [item], (tf.float32, tf.uint8)))