I need to make a new dataframe but I don't know how to use for loop to reduce the repitition.
This is my original data frame
ID t1 t2 t4 t5 t6
1 S B 11 1 1
1 S B 11 2 0
1 S B 12 3 1
1 S B 12 4 1
1 S B 13 5 0
1 S B 14 6 1
1 S B 14 7 1
1 S B 15 8 0
2 S B 11 1 1
2 S B 12 2 1
2 S B 13 3 1
2 S B 14 4 0
2 S B 15 5 1
3 S G 11 1 1
3 S G 12 2 1
3 S G 12 3 0
3 S G 13 4 0
3 S G 14 5 1
3 S G 15 6 1
4 S G 11 1 1
4 S G 12 2 0
4 S G 13 3 0
4 S G 14 4 1
4 S G 15 5 0
5 N B 11 1 1
5 N B 12 2 1
5 N B 13 3 1
6 N B 11 1 1
6 N B 12 2 1
6 N B 13 3 1
6 N B 13 4 1
6 N B 14 5 0
6 N B 15 6 1
7 N G 11 1 0
7 N G 12 2 1
8 N G 11 1 0
8 N G 11 2 1
8 N G 11 3 0
8 N G 12 4 1
8 N G 12 5 0
8 N G 13 6 1
8 N G 13 7 1
8 N G 13 8 1
8 N G 14 9 1
8 N G 14 10 0
8 N G 15 11 1
8 N G 15 12 1
8 N G 15 13 0
8 N G 15 14 0
The following is the code I have written to extract my new data frames:
t=levels(as.factor(df$t4))
df11<- df %>%
filter(t4==11) %>%
group_by(ID) %>%
mutate(num=seq_along(ID)) %>%
as.data.frame
df.11.new<- df11 %>%
group_by(t2, num) %>%
summarise(mean=mean(t6), count=n())
df.11.new$t7="d11"
I need to repeat this code for all the levels of t4, which are "11", "12", "13", "14" and "15"
and finally combine them all like the following code:
df.all<-rbind(df.11.new, df.12.new, df.13.new, df.14.new, df.15.new)
But I don't know how to write a for loop?
CodePudding user response:
Instead of filter
ing, add 't4' as grouping, then we don't need multiple filter
in a loop and then rbind
the outputs
library(stringr)
library(dplyr)
df.all <- df %>%
group_by(ID, t4) %>%
mutate(num = row_number()) %>%
group_by(t4, t2, num) %>%
summarise(mean = mean(t6), count = n(),
t7 = str_c('d', first(t4)), .groups = 'drop')
-checking with OP's output for t4 = 11
> df.all %>%
filter(t4 == 11)
# A tibble: 5 × 6
t4 t2 num mean count t7
<int> <chr> <int> <dbl> <int> <chr>
1 11 B 1 1 4 d11
2 11 B 2 0 1 d11
3 11 G 1 0.5 4 d11
4 11 G 2 1 1 d11
5 11 G 3 0 1 d11
> df.11.new
# A tibble: 5 × 4
# Groups: t2 [2]
t2 num mean count
<chr> <int> <dbl> <int>
1 B 1 1 4
2 B 2 0 1
3 G 1 0.5 4
4 G 2 1 1
5 G 3 0 1
If we use the rowid
from data.table
, can remove the first grouping
library(data.table)
df %>%
group_by(t4, t2, num = rowid(ID, t4)) %>%
summarise(mean = mean(t6), count = n(),
t7 = str_c('d', first(t4)), .groups = 'drop')