I have created a function to read JSON as a string with its schema. Then using that function in spark streaming. I am getting error while doing so. The same piece works when I create schema first, then use that schema to read, but doesn't work in single line. How can I fix it?
def processBatch(microBatchOutputDF: DataFrame, batchId: Long) {
TOPICS.split(',').foreach(topic =>{
var TableName = topic.split('.').last.toUpperCase
var df = microBatchOutputDF
/*var schema = schema_of_json(df
.select($"value")
.filter($"topic".contains(topic))
.as[String]
)*/
var jsonDataDf = df.filter($"topic".contains(topic))
.withColumn("jsonData", from_json($"value", schema_of_json(lit($"value".as[String])), scala.collection.immutable.Map[String, String]().asJava))
var srcTable = jsonDataDf
.select(col(s"jsonData.payload.after.*"), $"offset", $"timestamp")
srcTable
.select(srcTable.columns.map(c => col(c).cast(StringType)) : _*)
.write
.mode("append").format("delta").save("/mnt/datalake/raw/kafka/" TableName)
spark.sql(s"""CREATE TABLE IF NOT EXISTS kafka_raw.$TableName USING delta LOCATION '/mnt/datalake/raw/kafka/$TableName'""")
} )
}
Spark streaming code
import org.apache.spark.sql.streaming.Trigger
val StreamingQuery = InputDf
.select("*")
.writeStream.outputMode("update")
.option("queryName", "StreamingQuery")
.foreachBatch(processBatch _)
.start()
Error: org.apache.spark.sql.AnalysisException: Schema should be specified in DDL format as a string literal or output of the schema_of_json/schema_of_csv functions instead of schema_of_json(value)
CodePudding user response:
Error –org.apache.spark.sql.AnalysisException: Schema should be specified in DDL format as a string literal or output of the schema_of_json/schema_of_csv functions instead of schema_of_json(value)
Above error suggests issue with from_json()
function.
Syntax:- from_json(jsonStr, schema[, options])
- Returns a struct value with the given jsonStr
and schema
.
Refer below Examples:
> SELECT from_json('{"a":1, "b":0.8}', 'a INT, b DOUBLE');
{"a":1,"b":0.8}
> SELECT from_json('{"time":"26/08/2015"}', 'time Timestamp', map('timestampFormat', 'dd/MM/yyyy'));
{"time":2015-08-26 00:00:00}
Refer - https://docs.databricks.com/sql/language-manual/functions/from_json.html
CodePudding user response:
This is how I solved this.
I created a filtered dataframe from the kafka output dataframe, and applied all the logics in it, as it was before. The problem with generating schema while reading is, from_json
doesn't know which exact row to use from all the rows of the dataframe.
def processBatch(microBatchOutputDF: DataFrame, batchId: Long) {
TOPICS.split(',').foreach(topic =>{
var TableName = topic.split('.').last.toUpperCase
var df = microBatchOutputDF.where(col("topic") === topic)
var schema = schema_of_json(df
.select($"value")
.filter($"topic".contains(topic))
.as[String]
)
var jsonDataDf = df.withColumn("jsonData", from_json($"value", schema, scala.collection.immutable.Map[String, String]().asJava))
var srcTable = jsonDataDf
.select(col(s"jsonData.payload.after.*"), $"offset", $"timestamp")
srcTable
.select(srcTable.columns.map(c => col(c).cast(StringType)) : _*)
.write
.mode("append").format("delta").save("/mnt/datalake/raw/kafka/" TableName)
spark.sql(s"""CREATE TABLE IF NOT EXISTS kafka_raw.$TableName USING delta LOCATION '/mnt/datalake/raw/kafka/$TableName'""")
} )
}