I want to create a df starting from this data
item_features = {'A': {1, 2, 3}, 'B':{7, 2, 1}, 'C':{3, 2}, 'D':{9, 11} }
pos = {'B', 'C'}
neg = {'A'}
I want to obtain the following dataset:
1 2 3 7 positive item_id
0 1 1 0 1 1 B
1 0 1 1 0 1 C
2 1 1 1 0 0 A
So i want that the df:
-have the df columns always ordered by their Number during the
creating process ? Like in this case it is 1 -2 - 3- 4 and i want
to be sure that i never have an order like 4-1-3-2
- contains only item_id that are in one of the 2 sets ( pos or neg).
- if the item is positive the corresponding 'positive' column will be set to 1 else 0
- the other columns_names are the value in the item_features dictionary, but only for the items that are either in pos or in neg.
- the value in the column must be 1 if the corresponding column name is in value of the item_features dict for that specific item.
What is an efficient way to do that ?
CodePudding user response:
Use:
item_features = {'A': {1, 2, 3}, 'B':{4, 2, 1}, 'C':{3, 2}, 'D':{9, 11} }
pos = {'B', 'C'}
neg = {'A'}
#join sets
both = pos.union(neg)
#create Series, filter by both and create indicator columns
df=pd.Series(item_features).loc[both].agg(lambda x: '|'.join(map(str, x))).str.get_dummies()
df['item_id'] = df.index
df['positive'] = df['item_id'].isin(pos).astype(int)
df = df.reset_index(drop=True)
print(df)
1 2 3 4 item_id positive
0 0 1 1 0 C 1
1 1 1 0 1 B 1
2 1 1 1 0 A 0
If possible use lists instead sets:
item_features = {'A': {1, 2, 3}, 'B':{4, 2, 1}, 'C':{3, 2}, 'D':{9, 11} }
pos = ['B', 'C']
neg = ['A']
both = pos neg
#create Series, filter by both and create indicator columns
df=pd.Series(item_features).loc[both].agg(lambda x: '|'.join(map(str, x))).str.get_dummies()
df = df.sort_index(axis=1, level=0, key=lambda x: x.astype(int))
df['item_id'] = df.index
df['positive'] = df['item_id'].isin(pos).astype(int)
df = df.reset_index(drop=True)
print(df)
1 2 3 4 item_id positive
0 1 1 0 1 B 1
1 0 1 1 0 C 1
2 1 1 1 0 A 0
EDIT: solution for improv performance is:
item_features = {'A': {1, 2, 3}, 'B':{4, 2, 11}, 'C':{3, 2}, 'D':{9, 11} }
pos = ['B', 'C']
neg = ['A']
both = pos neg
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
d = { k: item_features[k] for k in both }
df = pd.DataFrame(mlb.fit_transform(d.values()),columns=mlb.classes_)
print (df)
df['item_id'] = d.keys()
df['positive'] = df['item_id'].isin(pos).astype(int)
print(df)
1 2 3 4 11 item_id positive
0 0 1 0 1 1 B 1
1 0 1 1 0 0 C 1
2 1 1 1 0 0 A 0