I have a dataframe with 10 numeric columns and 3 character columns, as a sample I prepare this dataframe:
df <- data.frame(
name = c("ANCON","ANCON","ANCON", "LUNA", "MAGOLLO", "MANCHAY", "MANCHAY","PATILLA","PATILLA"),
destiny = c("sea","reuse","sea","sea", "reuse","sea","sea","sea","sea"),
year = c("2022","2015","2022","2022", "2015","2016","2016","2018","2018"),
QQ = c(10,11,3,4,13,11,12,23,7),
Temp = c(14,16,16,15,16,20,19,14,18))
I need to group it by column "name", get the mean summary for columns "QQ" and "Temp", and the mode for columns "destiny" and "year". I could get the mean summary but I couldn´t include the mode
df_mean <- df %>%
group_by(name) %>%
summarise_all(mean, na.rm = TRUE)
name destiny year QQ Temp
<chr> <dbl> <dbl> <dbl> <dbl>
1 ANCON NA NA 8 15.3
2 LUNA NA NA 4 15
3 MAGOLLO NA NA 13 16
4 MANCHAY NA NA 11.5 19.5
5 PATILLA NA NA 15 16
the desired output with the medians is something like this:
name destiny year QQ Temp
1 ANCON sea 2022 8.0 15.3
2 LUNA sea 2022 4.0 15.0
3 MAGOLLO reuse 2015 13.0 16.0
4 MANCHAY sea 2016 11.5 19.5
5 PATILLA sea 2018 15.0 16.0
How could I do it? Please help
CodePudding user response:
Use across
and cur_column
. Median would only work with ordinal data, though, and for categorical data like the character columns you have, use mode:
mode <- function(x) {
x_unique <- unique(x)
x_unique[which.max(tabulate(match(x, x_unique)))]
}
Then
mode_columns <- c('destiny', 'year')
df %>%
group_by(name) %>%
summarise(
across(
everything(),
~ if (cur_column() %in% mode_columns) mode(.x) else mean(.x)
)
)
# A tibble: 5 × 5
name destiny year QQ Temp
<chr> <chr> <chr> <dbl> <dbl>
1 ANCON sea 2022 8 15.3
2 LUNA sea 2022 4 15
3 MAGOLLO reuse 2015 13 16
4 MANCHAY sea 2016 11.5 19.5
5 PATILLA sea 2018 15 16
UPD: Or you could summarise a bit differently
summarise(
across({{mode_cols}}, mode),
across(!{{mode_cols}}, mean)
)