I'm looking for the algorithm to convert a lotto ticket number to an integer value an back again.
Let's say the lotto number can be between 1 and 45 and a tickets contains 6 unique numbers. This means there are a maximum of 8145060 unique lotto tickets.
eg:
01-02-03-04-05-06 = 1
01-02-03-04-05-07 = 2
.
.
.
39-41-42-43-44-45 = 8145059
40-41-42-43-44-45 = 8145060
I'd like to have a function (C# preferable but any language will do) which converts between a lotto ticket and an integer and back again. At the moment I use the quick and dirty method of pre-calculating everything, which needs a lot of memory.
CodePudding user response:
there seem to be actually 45^6 distinct numbers, a simple way is to treat the ticket number as a base-45 number and convert it to base 10:
static ulong toDec(string input){
ulong output = 0;
var lst = input.Split('-').ToList();
for (int ix =0; ix< lst.Count; ix )
{
output = output ( (ulong.Parse(lst[ix])-1) *(ulong) Math.Pow(45 , 5-ix));
}
return output;
}
examples:
- 01-01-01-01-01-01 => 0
- 01-01-01-01-01-02 => 1
- 01-01-01-01-02-01 => 45
- 45-45-45-45-45-45 => 8303765624
CodePudding user response:
For enumerating integer combinations, you need to use the combinatorial number system. Here's a basic implementation in C#:
using System;
using System.Numerics;
using System.Collections.Generic;
public class CombinatorialNumberSystem
{
// Helper functions for calculating values of (n choose k).
// These are not optimally coded!
// ----------------------------------------------------------------------
protected static BigInteger factorial(int n) {
BigInteger f = 1;
while (n > 1) f *= n--;
return f;
}
protected static int binomial(int n, int k) {
if (k > n) return 0;
return (int)(factorial(n) / (factorial(k) * factorial(n-k)));
}
// In the combinatorial number system, a combination {c_1, c_2, ..., c_k}
// corresponds to the integer value obtained by adding (c_1 choose 1)
// (c_2 choose 2) ... (c_k choose k)
// NOTE: combination values are assumed to start from zero, so
// a combination like {1, 2, 3, 4, 5} will give a non-zero result
// ----------------------------------------------------------------------
public static int combination_2_index(int[] combo) {
int ix = 0, i = 1;
Array.Sort(combo);
foreach (int c in combo) {
if (c > 0) ix = binomial(c, i);
i ;
}
return ix;
}
// The reverse of this process is a bit fiddly. See Wikipedia for an
// explanation: https://en.wikipedia.org/wiki/Combinatorial_number_system
// ----------------------------------------------------------------------
public static int[] index_2_combination(int ix, int k) {
List<int> combo_list = new List<int>();
while (k >= 1) {
int n = k - 1;
if (ix == 0) {
combo_list.Add(n);
k--;
continue;
}
int b = 0;
while (true) {
// (Using a linear search here, but a binary search with
// precomputed binomial values would be faster)
int b0 = b;
b = binomial(n, k);
if (b > ix || ix == 0) {
ix -= b0;
combo_list.Add(n-1);
break;
}
n ;
}
k--;
}
int[] combo = combo_list.ToArray();
Array.Sort(combo);
return combo;
}
}
The calculations are simpler if you work with combinations of integers that start from zero, so for example:
00-01-02-03-04-05 = 0
00-01-02-03-04-06 = 1
.
.
.
38-40-41-42-43-44 = 8145058
39-40-41-42-43-44 = 8145059