i have my data coming from database like this :
Account | Name | Address1 | State | Zip | Loantype | expiry |
---|---|---|---|---|---|---|
100 | Sam | Street 5 | NY | NY001 | E | 2019 |
100 | Sam | Street 5 | NY | NY001 | T | 2020 |
100 | Sam | Street 10 | NJ | NJ001 | E | 2019 |
100 | Sam | Street 10 | NJ | NJ001 | T | 2020 |
101 | John | Street 1 | CA | CA001 | E | 2019 |
101 | Joh | Street 1 | CA | CA001 | T | 2020 |
I Would need to convert above data into below json format using python pandas. I am trying df.to_json(orient = 'index') but it is not creating nested formate as below. Any suggestions ?
{
results: [
{
account:100,
Name: Sam,
LoanDetails : [
{
Address1: Street 5,
State : NY,
ZIP: NY0001,
LoanList : [
{
Loantype: E,
expiry: 2012
}
{
Loantype: T,
expiry: 2020
}
]
}
{
Address1: Street 10,
State: NJ,
ZIP: Nj0001,
LoanList: [
{
Loantype: E,
expiry: 2019
}
{
Loantype: T,
expiry: 2020
}
]
}
}
{
account:100,
Name: John,
LoanDetails :
{
Address1: Street 1,
State : CA,
ZIP: CA0001,
LoanList : [
{
Loantype: E,
expiry: 2012
}
{
Loantype: T,
expiry: 2020
}
]
}
}
]
}
CodePudding user response:
I tried below and it worked:
import pandas as pd
import json
df = pd.DataFrame({'account':['100','100','100','100','101'],
'name':['sam','sam','sam','sam','john'],
'address1':['street 5','street 5','street 10','street 10','street 1'],
'state':['ny','ny','nj','nj','ca'],
'zip':['ny0001','ny0001','nj0001','nj0001','CA001'],
'loantype':['e','t','e','t','e'],
'expiry':[2019,2020,2019,2020,2019]
})
k = df.groupby(['account','name','address1','state']).apply(lambda x:x[['loantype','expiry']].to_dict('records')).reset_index().rename(columns={0:'Loanlist'})#.to_json(orient = 'records')
j = k.groupby(['account','name',]).apply(lambda x:x[['address1','state','Loanlist']].to_dict('records')).reset_index().rename(columns={0:'Loandetails'}).to_json(orient = 'records')
print(j)
CodePudding user response:
this just helps to get your output. may be alternate approch is there.
a = {}
for i in df.index:
a[i]={}
a[i]["LoanDetails"] = {}
a[i]["LoanList"] = {}
for col in df:
if col in (["Account","Name"]):
a[i][col] = df[col].iloc[i]
if col in (["Address1","State","Zip"]):
a[i]["LoanDetails"][col] = df[col].iloc[i]
if col in (["Loantype","expiry"]):
a[i]["LoanList"][col] = df[col].iloc[i]
b ={}
b["Result"] =[]
for i,v in a.items():
b["Result"].append(v)