I'm trying to make an airplane controller, I am kind of aiming for something between arcade and realistic, so I want the plane to turn with a force proportional to the roll.
I haven't coded in any adjustments and I'm still prototyping the whole thing, but I encountered a problem with getting the signed rotation angle while using quaternions, I had a look at Determining if quarternion rotation is clockwise or counter clockwise here on SO but I am having trouble generalizing the solution to the (almost) arbitrary plane the rotation can be at.
What I made by now:
private void FixedUpdate()
{
float desiredYaw = _yaw * _rotationSpeed * Time.fixedDeltaTime;
float desiredPitch = -_pitch * _rotationSpeed * Time.fixedDeltaTime;
float rotationStepSize = _throttle * Time.fixedDeltaTime;
Quaternion toRotate = Quaternion.Euler(desiredPitch, 0, desiredYaw);
Quaternion straighRotation = Quaternion.LookRotation(_transform.forward, Vector3.up );
_rotation = _transform.rotation * toRotate;
float turningForce = Quaternion.Angle( _rotation, straighRotation );
_rigidbody.MoveRotation( _rotation );
_rigidbody.AddTorque( turningForce * _rotationForce * rotationStepSize * Vector3.up );
_rigidbody.AddRelativeForce( _speed * rotationStepSize * Vector3.forward );
}
EDIT: I realized I'm calculating the turning force using the roll rather then the yaw, that was intended just wrong wording, corrected now.
CodePudding user response:
Since all you need is a factor that describes how downward the plane's right is, you can just use the y component of the plane's right for that. No need to bring in quaternions or even trigonometry. Explanation in comments:
private void FixedUpdate()
{
// ...
// Calculate how downward local right is in range [-1,1]
// The more downward, the more tilted right the plane is
// positive = tilted right
// negative = tilted left
float turnFactor = -_transform.right.y;
// Could do things to modify turnFactor to affect easing here.
// For instance, if turning rate should start slower then rapidly increase:
// turnFactor = Mathf.Sign(turnFactor) * turnFactor * turnFactor;
// Use factor and _rotationForce member to calculate torque, apply along
// global up.
// We expect to call this every fixed frame so we can just use the default
// ForceMode of ForceMode.Force which multiplies fixed delta time inside.
_rigidbody.AddTorque(_rotationForce * turnFactor * Vector3.up);
// ...
}