With the following data, I think I want a column (DESIRED_DURATION_COL
) to work out the duration (according to start_datetime
) of consecutive Truths:
project_id | start_datetime | diag_local_code | DESIRED_DURATION_COL |
---|---|---|---|
1 | 2017-01-18 | False | 0 |
1 | 2019-04-14 | True | 0 |
1 | 2019-04-17 | True | 3 |
1 | 2019-04-19 | False | 0 |
1 | 2019-04-23 | True | 0 |
1 | 2019-04-25 | True | 2 |
1 | 2019-04-30 | True | 7 |
1 | 2019-05-21 | False | 0 |
This is so I can get the average truth duration (mean), per project_id
, such that I get a df like:
project_id | avg_duration |
---|---|
1 | 5 |
2 | 8 |
3 | 2 |
Can't work out how to do this, thanks in advance!
CodePudding user response:
Solution for calculating duration
:
m = df['diag_local_code']
dt = df[m].groupby(['project_id', (~m).cumsum()])['start_datetime'].transform('first')
df['duration'] = df['start_datetime'].sub(dt).dt.days.fillna(0)
How this works?
Use cumsum
on inverted diag_local_code
to identify groups of consecutive ones per project_id
, then filter the rows where diag_local_code
is True
then group the filtered dataframe and transform start_datetime
with first
to broadcast first date value across each group, finally subtract the broadcasted date value from start_datetime
to calculate the desired duration
Result
project_id start_datetime diag_local_code duration
0 1 2017-01-18 False 0.0
1 1 2019-04-14 True 0.0
2 1 2019-04-17 True 3.0
3 1 2019-04-19 False 0.0
4 1 2019-04-23 True 0.0
5 1 2019-04-25 True 2.0
6 1 2019-04-30 True 7.0
7 1 2019-05-21 False 0.0
Solution for calculating average consecutive duration of True
values
m = df['diag_local_code']
(
df[m].groupby(['project_id', (~m).cumsum()])['start_datetime']
.agg(np.ptp).dt.days.groupby(level=0).mean().reset_index(name='avg_duration')
)
Result:
project_id avg_duration
0 1 5.0
CodePudding user response:
You can group by project_id
column and split each group into consecutive value groups. Then check the groups value is all True
.
def avg_duration(group):
subgroup = group.groupby(group['diag_local_code'].diff().ne(0).cumsum())
true_count = subgroup.apply(lambda g: g['diag_local_code'].all()).sum()
true_last_sum = subgroup.apply(lambda g: g.iloc[-1]['DESIRED_DURATION_COL'] if g['diag_local_code'].all() else 0).sum()
return true_last_sum/true_count
out = df.groupby('project_id').apply(avg_duration).to_frame('avg_duration').reset_index()
print(out)
project_id avg_duration
0 1 5.0