Sample data:
WN TOW Azimuth Elevation S4_SIG1 S4_SIG2 TEC
0 2138 432060 289 38 0.087 0.075 16.083
1 2138 432060 37 5 0.175 nan 22.237
2 2138 432060 42 39 0.058 nan 11.188
3 2138 432060 283 6 0.210 nan 19.156
4 2138 432060 23 60 0.054 nan 14.448
I am using
df4=df3.dropna(how='any')
df4
But then it is returning same dataframe. I tried subset=['S4_SIG2']
still it didnt worked out.SOS!!
CodePudding user response:
#change to type float
df3 ['WN'] = df3['WN'].astype(float)
df3 ['TOW'] = df3['TOW'].astype(float)
df3 ['Azimuth'] = df3['Azimuth'].astype(float)
df3 ['Elevation'] = df3['Elevation'].astype(float)
df3 ['S4_SIG1'] = df3['S4_SIG1'].astype(float)
df3 ['S4_SIG2'] = df3['S4_SIG2'].astype(float)
df3 ['TEC'] = df3['TEC'].astype(float)
df3.dropna()
CodePudding user response:
You can fix a DataFrame that should be numeric, but that's currently object typed by doing:
for col in df:
df[col] = pd.to_numeric(df[col])
CodePudding user response:
You are missing the inplace= True
df3.dropna(how='any',inplace= True)
df3