Home > Mobile >  PySpark dataframe : Add new column For Each Unique ID and Column Condition
PySpark dataframe : Add new column For Each Unique ID and Column Condition

Time:10-12

I am trying to assign value of 1 in new column "new_col" with condition based in other column and id column.

Here's my dataframe:

enter image description here

I'd like to add a new column, that would get 1 if "l1" or "l3" is in column "location" for that "id_col".

The expected result:

enter image description here

CodePudding user response:

You could use arrays_overlap after creating an array with 'l1' and 'l3' and collecting all the 'location' values using collect_set as a window function.

Input:

from pyspark.sql import functions as F, Window as W
df = spark.createDataFrame(
    [('id1', 'l1'),
     ('id1', 'l2'),
     ('id1', 'l3'),
     ('id1', 'l4'),
     ('id2', 'l2'),
     ('id2', 'l3'),
     ('id2', 'l5'),
     ('id3', 'l2'),
     ('id3', 'l4')],
    ['id_col', 'location'])

Script:

vals = F.array(*map(F.lit, ['l1', 'l3']))
w = W.partitionBy('id_col')
df = df.withColumn(
    'new_col',
    F.arrays_overlap(vals, F.collect_set('location').over(w)).cast('long')
)

df.show()
#  ------ -------- ------- 
# |id_col|location|new_col|
#  ------ -------- ------- 
# |   id1|      l1|      1|
# |   id1|      l2|      1|
# |   id1|      l3|      1|
# |   id1|      l4|      1|
# |   id2|      l2|      1|
# |   id2|      l3|      1|
# |   id2|      l5|      1|
# |   id3|      l2|      0|
# |   id3|      l4|      0|
#  ------ -------- ------- 

Another way would be using exists:

w = W.partitionBy('id_col')
df = df.withColumn(
    'new_col',
    F.exists(F.collect_set('location').over(w), lambda x: x.isin('l1', 'l3')).cast('long')
)
  • Related