I want to make a function with loop and conditional, that count only when Actual Result = 1. So the numbers always increase by 1 if the Actual Result = 1.
This is my dataframe:
This is my code but it doesnt produce the result that i want :
def func_count(x):
for i in range(1,880):
if x['Actual Result']==1:
result = i
else:
result = '-'
return result
X_machine_learning['Count'] = X_machine_learning.apply(lambda x:func_count(x),axis=1)
When i check & filter with count != '-' The result will be like this :
The number always equal to 1 and not increase by 1 everytime the actual result = 1. Any solution?
CodePudding user response:
Try something like this:
import pandas as pd
df = pd.DataFrame({
'age': [30,25,40,12,16,17,14,50,22,10],
'actual_result': [0,1,1,1,0,0,1,1,1,0]
})
count = 0
lst_count = []
for i in range(len(df)):
if df['actual_result'][i] == 1:
count =1
lst_count.append(count)
else:
lst_count.append('-')
df['count'] = lst_count
print(df)
Result
age actual_result count
0 30 0 -
1 25 1 1
2 40 1 2
3 12 1 3
4 16 0 -
5 17 0 -
6 14 1 4
7 50 1 5
8 22 1 6
9 10 0 -
CodePudding user response:
Actually, you don't need to loop over the dataframe, which is mostly a Pandas-antipattern that should be avoided. With df
your dataframe you could try the following instead:
m = df["Actual Result"] == 1
df["Count"] = m.cumsum().where(m, "-")
Result for the following dataframe
df = pd.DataFrame({"Actual Result": [1, 1, 0, 1, 1, 1, 0, 0, 1, 0]})
Actual Result
0 1
1 1
2 0
3 1
4 1
5 1
6 0
7 0
8 1
9 0
is
Actual Result Count
0 1 1
1 1 2
2 0 -
3 1 3
4 1 4
5 1 5
6 0 -
7 0 -
8 1 6
9 0 -