I am trying to plot a bar chart where I would like to have two bars, one stacked and another one not stacked by the side of the stacked one.
I have the first plot which is a stacked plot:
And another plot, with the same lines and columns:
I want to plot it side by side to the columns of the last plot, and not stack it:
This is a code snippet to replicate my problem:
d = pd.DataFrame({'DC': {'col0': 257334.0,
'col1': 0.0,
'col2': 0.0,
'col3': 186146.0,
'col4': 0.0,
'col5': 366431.0,
'col6': 461.0,
'col7': 0.0,
'col8': 0.0},
'DC - IDC': {'col0': 32665.0,
'col1': 0.0,
'col2': 156598.0,
'col3': 0.0,
'col4': 176170.0,
'col5': 0.0,
'col6': 0.0,
'col7': 0.0,
'col8': 0.0},
'No Address': {'col0': 292442.0,
'col1': 227.0,
'col2': 298513.0,
'col3': 117167.0,
'col4': 249.0,
'col5': 747753.0,
'col6': 271976.0,
'col7': 9640.0,
'col8': 211410.0}})
d[['DC', 'DC - IDC']].plot.barh(stacked=True)
d[['No Address']].plot.barh( stacked=False, color='red')
CodePudding user response:
You can achieve this only by using matplotlib.pyplot library. First, you need to import NumPy and matplotlib libraries.
import matplotlib.pyplot as plt
import numpy as np
Then,
plt.figure(figsize=(15,8))
plt.barh(d.index, d['DC'], 0.4, label='DC', align='edge')
plt.barh(d.index, d['DC - IDC'], 0.4, label='DC - IDC', align='edge')
plt.barh(np.arange(len(d.index))-0.4, d['No Address'], 0.4, color='red', label='No Address', align='edge')
plt.legend();
Here is what I did:
- Increase the figure size (optional)
- Create a BarContainer for each column
- Decrease the width of each bar to 0.4 to make them fit
- Align the left edges of the bars with the y positions
- Normally all bars now are stacked. To put the red bars to the side you need to subtract each y coordinate by the width of the bars (0.4)
np.arange(len(d.index))-0.4
- Finally, add a legend
CodePudding user response:
Use position
parameter to draw 2 columns on the same index:
fig, ax = plt.subplots()
d[['DC', 'DC - IDC']].plot.barh(width=0.4, position=0, stacked=True, ax=ax)
d[['No Address']].plot.barh(width=0.4, position=1, stacked=True, ax=ax, color='red')
plt.show()