I am new in python and pandas and even though I researched a lot about intervals, I couldnt find any solution for my problem, I hope someone can help
Here is a sample of my DF
df = pd.DataFrame(
data=[['Mel Gibson', 'German', '2021-9-23 14:22:38', 301 ],
['Jim Carrey', 'German', '2021-9-23 14:27:39', 1041 ],
['Mel Gibson', 'German','2021-9-24 13:33:22',12]],
columns=['specialist', 'Language', 'Interval Start', 'status_duration']
)
df['Interval Start'] = pd.to_datetime(df['Interval Start'])
What I want to do is transform status duration to 15 minute intervals and group them per specialist and per day.
My desired output should be like below:
df = pd.DataFrame(
data=[['Mel Gibson', 'German', '2021-9-23 14:15:00', 301 ],
['Jim Carrey', 'German', '2021-9-23 14:15:00', 141 ],
['Jim Carrey', 'German', '2021-9-23 14:30:00', 900 ],
['Mel Gibson', 'German','2021-9-24 13:30:00',12]],
columns=['specialist', 'Language', 'Interval Start', 'status_duration']
)
So basically I need to split the seconds in status duration in 15 minute intervals until there is no remaining duration.
Edit:
My original data is like this:
df = pd.DataFrame(
data=[['Mel Gibson', 'German', '2021-9-23 14:22:38', 301 ],
['Mel Gibson', 'German', '2021-9-23 14:27:40', 4678 ],
['Mel Gibson', 'German','2021-9-24 13:33:22',12]],
columns=['specialist', 'Language', 'Interval Start', 'status_duration']
)
df['Interval Start'] = pd.to_datetime(df['Interval Start'])
The code from Henry gives me output for only the first row, second row is skipped.
Also lets say if a call has started at 10:35:00, this interval's(10:30-10:45) can not exceed 600 seconds as there are only 10 minutes left from the start time.
CodePudding user response:
One way is to make use of the quotient and remainder of status_duration
, explode
the result and finally add up the time by seconds:
ref = (df.groupby(["specialist", "Language", pd.Grouper(key="Interval Start", freq="D")], as_index=False)
.agg(status_duration=("status_duration", lambda d: [*([900]*(d.iat[0]//900)), d.iat[0]%900]),
Interval=("Interval Start", "first"))
.explode("status_duration"))
ref["Interval"] = ref["Interval"].dt.floor("15min") pd.to_timedelta(ref.groupby(ref.index).cumcount()*900, unit="sec")
print (ref)
specialist Language status_duration Interval
0 Jim Carrey German 900 2021-09-23 14:15:00
0 Jim Carrey German 141 2021-09-23 14:30:00
1 Mel Gibson German 301 2021-09-23 14:15:00
2 Mel Gibson German 12 2021-09-24 13:30:00
CodePudding user response:
You can use the dt.floor()
function for the rounding:
df['Interval Start'] = df['Interval Start'].dt.floor("15min")
Result:
specialist Language Interval Start status_duration
0 Mel Gibson German 2021-09-23 14:15:00 301
1 Jim Carrey German 2021-09-23 14:15:00 1041
2 Mel Gibson German 2021-09-24 13:30:00 12