I have split a data frame by two months (june and july). I then nested these two different data frames based on the ID
. The nested data frame contains a column with the ID
and a data
column.
The data
column contains a list, and the list represents the data for the ID
that has been split into three 10-day intervals in a month. For example, for the ID
A
, the list shows [[1]]
as the first 10-days, [[2]]
as the second 10-days, and [[3]]
as the third 10-days within a month.
For the next component, I want to go down each list for each ID
and calculate the difference between the minimum jDate
in nested_june
and nested_july
, as shown below for n1
, n2
,and n3
. These differences are then combined into a matrix, m1
.
Finally, I have a list of two matrices l1
, and I would like to divide each matrices in the list by m1
.
Is there a more efficient way calculate the differences and the division of matrices in list?
library(lubridate)
library(dplyr)
library(tidyr)
library(purrr)
f = function(data){
data %>% mutate(
new = floor_date(data$date, "10 days"),
new = if_else(day(new) == 31, new - days(10), new)
) %>%
group_split(new)
}
ID <- rep(c("A","B","C", "D"), 1000)
date <- rep_len(seq(dmy("01-01-2010"), dmy("31-12-2013"), by = "days"), 500)
x <- runif(length(date), min = 60000, max = 80000)
y <- runif(length(date), min = 800000, max = 900000)
df <- data.frame(date = date,
x = x,
y =y,
ID)
df$jDate <- julian(as.Date(df$date), origin = as.Date("1970-01-01"))
df$Month <- month(df$date)
df_june <- filter(df, Month == c("6"))
df_july <- filter(df, Month == c("7"))
nested_june <- tibble(
df_june
) %>% group_by(ID) %>%
nest() %>%
mutate(data = map(data, f))
nested_july <- tibble(
df_july
) %>% group_by(ID) %>%
nest() %>%
mutate(data = map(data, f))
# Create list of matrices
t1 <- c(100,150,200)
t2 <- c(200,250,350)
t3 <- c(300,350, 400)
mat <- cbind(t1,t2, t3)
t1 <- c(150,150,200)
t2 <- c(250,250,350)
t3 <- c(350,350, 400)
mat2 <- cbind(t1,t2, t3)
l1 <- list(list(mat), list(mat2))
## Hoping to get a function for everything below here ##
# Calculate difference in days from the first day of one interval to the first
# day of the second interval and repeat with the other intervals.
n1 <- c(((min(nested_july[[2]][[1]][[1]]$jDate))- min(nested_june[[2]][[1]][[1]]$jDate)),
((min(nested_july[[2]][[1]][[1]]$jDate))- min(nested_june[[2]][[1]][[2]]$jDate)),
((min(nested_july[[2]][[1]][[1]]$jDate))- min(nested_june[[2]][[1]][[3]]$jDate)))
n2 <- c(((min(nested_july[[2]][[1]][[2]]$jDate))- min(nested_june[[2]][[1]][[1]]$jDate)),
((min(nested_july[[2]][[1]][[2]]$jDate))- min(nested_june[[2]][[1]][[2]]$jDate)),
((min(nested_july[[2]][[1]][[2]]$jDate))- min(nested_june[[2]][[1]][[3]]$jDate)))
n3 <- c(((min(nested_july[[2]][[1]][[3]]$jDate))- min(nested_june[[2]][[1]][[1]]$jDate)),
((min(nested_july[[2]][[1]][[3]]$jDate))- min(nested_june[[2]][[1]][[2]]$jDate)),
((min(nested_july[[2]][[1]][[3]]$jDate))- min(nested_june[[2]][[1]][[3]]$jDate)))
m1 <- cbind(n1,n2,n3)
# Expected output as matrices
l1[[1]][[1]]/m1
l1[[2]][[1]]/m1
CodePudding user response:
Try with lapply
lapply(l1, function(sub) {sub <- lapply(sub, `/`, m1)
sub})
-output
[[1]]
[[1]][[1]]
t1 t2 t3
[1,] 3.333333 4.761905 6.000000
[2,] 8.333333 8.333333 9.210526
[3,] 20.000000 15.909091 13.333333
[[2]]
[[2]][[1]]
t1 t2 t3
[1,] 5.000000 5.952381 7.000000
[2,] 8.333333 8.333333 9.210526
[3,] 20.000000 15.909091 13.333333
TO create the matrix
, we can do
library(tidyr)
library(purrr)
library(dplyr)
m2 <- crossing(i1 = seq_len(ncol(l1[[1]][[1]])),
i2 = seq_len(ncol(l1[[1]][[1]]))) %>%
transmute(new =map2_dbl(i1, i2,
~ min(nested_july[[2]][[1]][[.x]]$jDate) -
min(nested_june[[2]][[1]][[.y]]$jDate))) %>%
pull(new) %>%
matrix(ncol = 3)
-checking
> m2
[,1] [,2] [,3]
[1,] 30 42 50
[2,] 18 30 38
[3,] 10 22 30
OP's 'm1
> m1
n1 n2 n3
[1,] 30 42 50
[2,] 18 30 38
[3,] 10 22 30