I've looked a number of answers (here, here, here) but none of them yield the results that I want. I have a data set of industry volumes over time. I would like the stacked bars ordered each month by volume. This means that each month the stacked bar should have a different order if the relative volumes change within that month.
Below is a truncated sample of the data:
test <- structure(list(Date = structure(c(18506, 18506, 18506, 18506,
18506, 18506, 18536, 18536, 18536, 18536, 18536, 18536, 18567,
18567, 18567, 18567, 18567, 18567), class = "Date"), Industry = c("Investment",
"Telecoms", "Mortgage & Loans", "Banking", "Insurance", "Credit Cards",
"Telecoms", "Investment", "Mortgage & Loans", "Banking", "Credit Cards",
"Insurance", "Investment", "Telecoms", "Mortgage & Loans", "Credit Cards",
"Insurance", "Banking"), volume = c(775349, 811294, 3144684,
4427814, 7062691, 9377254, 1210194, 1735033, 3539406, 6952688,
8858649, 9076391, 670934, 869452, 3542294, 5132132, 6953113,
6954535)), row.names = c(NA, -18L), groups = structure(list(Date = structure(c(18506,
18536, 18567), class = "Date"), .rows = structure(list(1:6, 7:12,
13:18), ptype = integer(0), class = c("vctrs_list_of", "vctrs_vctr",
"list"))), row.names = c(NA, -3L), class = c("tbl_df", "tbl",
"data.frame"), .drop = TRUE), class = c("grouped_df", "tbl_df",
"tbl", "data.frame"))
Here is the graph so far:
#A. Library
library(dplyr)
library(ggplot)
library(ggtext)
library(scales)
#B. Graph
graph <- test %>%
ggplot(aes(x=Date))
##1. Bar graph
geom_bar(aes(x=Date, y=volume, fill = Industry), stat="identity")
##2. Graph title and Axis labels
ggtitle(label = "**Volume**",
subtitle = "By Industry")
ylab("Volume (Millions)")
xlab("")
##3. Scales
scale_fill_manual(values=c("#e3120b", "#336666", "#FB9851", "#acc8d4",
"#dbcc98", "#36E2BD"))
scale_x_date(date_breaks = "month", labels = scales::label_date_short())
scale_y_continuous(labels = unit_format(unit = "M", scale = 1e-6,
accuracy = 1))
#4. Theme
guides(col = guide_legend(ncol = 2, nrow = 3))
theme_minimal()
theme(text = element_text(family = "Georgia"),
panel.border=element_blank(),
axis.line=element_line(),
plot.title = element_markdown(color="black", size=14, hjust = .5),
plot.subtitle = element_text(hjust = .5),
axis.title.x = element_text(size = 9, color = "grey30"),
axis.title.y = element_text(size = 9, color = "grey30"),
legend.box.background = element_rect(color="black", size=.5),
legend.title = element_blank(),
legend.text = element_text(size = 6),
legend.position = "bottom",
strip.background = element_rect(linetype="solid",),
panel.grid.minor.y = element_line(color = NA),
panel.grid.minor.x = element_line(color = NA),
plot.caption = ggtext::element_markdown(hjust = 1, size = 7,
color = "#7B7D7D"))
From what I understand, ggplot
sorts the stacked bars by the factor order. I tried test %>% arrange(Date, volume)
but then got stuck on how I could change the factors by month rather than just the static order of the factors. I could create a separate bar for each month with a separate factor but this gets cumbersome if I want to add multiple years to the graph.
Any help appreciated!
CodePudding user response:
I've taken the liberty to boil your example down to the essential. As per comment, I don't think there is a way around defining the factor levels for each month separately. But you can do this in a function, create a list, and make use of the list character of a ggplot object.
That way is scalable, this means, it will stay the same code no matter how many months you have... :)
library(tidyverse)
library(lubridate)
test <-
test %>%
## it's probably not necessary to order the data and
## create the factor levels explicitly, but it gives more control
arrange(Date) %>%
mutate(year_mo = fct_inorder(paste(year(Date), month(Date), sep = "_")))
## split the new data by month and create different factor levels
ls_test <-
test %>%
split(., .$year_mo) %>%
map(function(x) {x$Industry <- fct_reorder(x$Industry, x$volume); x})
## make your geom_col list (geom_col is equivalent to geom_bar(stat= "identity")
ls_p_col <- map(ls_test, function(x){
geom_col(data = x, mapping = aes(x=year_mo, y=volume, fill = Industry))
})
# Voilà!
ggplot()
ls_p_col
scale_fill_brewer()
scale_x_discrete(limits = unique(test$year_mo)) # to force the correct order of your x