I have a data frame which looks like this:
df
colA colB
0 0
1 1
0 1
0 1
0 1
1 0
0 0
1 1
0 1
I would like to convert a certain proportion of the 0 in colA to NA and a certain proportion of 1 in colB to NA
if I do this:
df["colA"][df["colA"] == 0] <- NA
all the 0 in columns A will be converted to NA, however I just want half of them to be converted
Similarly, for colB I want only 1/3 of the 1 to be converted:
df["colB"][df["colB"] == 1] <- NA
Expected output:
colA colB
0 0
1 1
NA 1
0 1
NA 1
1 0
0 0
1 NA
NA NA
CodePudding user response:
One way
tmp=which(df["colA"]==0)
df$colA[sample(tmp,round(length(tmp)/2))]=NA
similar for colB
tmp=which(df["colB"]==1)
df$colB[sample(tmp,round(length(tmp)/3))]=NA
CodePudding user response:
You can use prodNA
from the missForest
package
set.seed(1)
library(missForest)
df[df$colA == 0, "colA"] <- prodNA(df[df$colA == 0, "colA", drop=F], noNA = 0.5)
df[df$colB == 1, "colB"] <- prodNA(df[df$colB == 1, "colB", drop=F], noNA = 1/3)
df
colA colB
1 NA 0
2 1 NA
3 0 NA
4 NA 1
5 NA 1
6 1 0
7 0 0
8 1 1
9 0 1
CodePudding user response:
I'll contribute a tidyverse
approach here.
library(tidyverse)
df %>% mutate(id_colA = ifelse(colA == 1, NA, 1:n()),
colA = ifelse(id_colA %in% sample(na.omit(id_colA), sum(!is.na(id_colA))/2), NA, colA),
id_colB = ifelse(colB == 0, NA, 1:n()),
colB = ifelse(id_colB %in% sample(na.omit(id_colB), sum(!is.na(id_colB))/3), NA, colB)) %>%
select(-starts_with("id_"))