My panel data looks as follows:
structure(list(Country = c("Afghanistan", "Afghanistan", "Afghanistan",
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan",
"Afghanistan", "Afghanistan"), CountryCode = c("AFG", "AFG",
"AFG", "AFG", "AFG", "AFG", "AFG", "AFG", "AFG", "AFG"), Time = c("1996",
"1997", "1998", "1999", "2000", "2001", "2002", "2003", "2004",
"2005"), Time.Code = c("YR1996", "YR1997", "YR1998", "YR1999",
"YR2000", "YR2001", "YR2002", "YR2003", "YR2004", "YR2005"),
gdp_pc_g = c(NA, NA, NA, NA, NA, NA, NA, 3.86838029515866,
-2.87520316702623, 7.20796721836321), gdp_pc = c(NA, NA,
NA, NA, NA, NA, 1189.78466765718, 1235.81006329565, 1200.27801321735,
1286.79365893927), population_g = c(4.0194777158615, 2.63650176396731,
1.9473438616857, 2.17042851112236, 2.97505722281038, 3.90280496415438,
4.4967187466326, 4.66834379545461, 4.32155951673842, 3.68269988149014
), savings = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), inflation = c(NA,
NA, NA, NA, NA, NA, NA, 11.655238211175, 11.2714320712639,
10.9127735539374), unemployment = c(10.9619998931885, 10.7829999923706,
10.8020000457764, 10.8090000152588, 10.8059997558594, 10.8090000152588,
11.2569999694824, 11.1409997940063, 10.9879999160767, 11.2170000076294
), crime = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), health = c(NA,
NA, NA, NA, NA, NA, 0.08418062, 0.65096337, 0.5429256, 0.5291841
), health_new = c(NA, NA, NA, NA, NA, NA, 1.21245611, 5.45767879,
3.60296822, 3.37097836), co2 = c(1180, 1100, 1040, 810, 760,
730, 1029.99997138977, 1220.00002861023, 1029.99997138977,
1549.99995231628), debt_wb = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_), debt_imf = c(NA, NA, NA, NA, NA, NA, 345.97748,
270.60236, 244.96669, 206.35601), qualityofgovernment = c(-1.94518780708313,
NA, -1.9237864613533, NA, -1.96282829840978, NA, -1.63204962015152,
-1.4781574010849, -1.49412107467651, -1.52730602025986),
migration = c(27.194, 6.129, 35.74, 85.758, -1007.135, -192.286,
1327.074, 388.632, -248.616, 252.185), gdp_pc_log = c(NA,
NA, NA, NA, NA, NA, 7.08152761818328, 7.11948195573634, 7.09030848662408,
7.15990886757784), gdp_pc_1996 = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_), gdp_pc_1996_log = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_), unemployment_log = c(2.39443473688013, 2.3779708191924,
2.37973130640847, 2.38037912184574, 2.38010151282881, 2.38037912184574,
2.42099015466168, 2.41063197858748, 2.3968037605953, 2.41743048534325
), crime_log = c(NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), health_new_log = c(NA, NA, NA, NA, NA, NA, 0.192648145236196,
1.69702356932679, 1.28175801129963, 1.21520301677122), co2_log = c(7.07326971745971,
7.00306545878646, 6.94697599213542, 6.69703424766648, 6.63331843328038,
6.59304453414244, 6.93731405344676, 7.10660616117831, 6.93731405344676,
7.3460101791496), migration_t5 = c(NA, NA, NA, NA, NA, 27.194,
6.129, 35.74, 85.758, -1007.135), debt_imf_1996 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), debt_imf_1996_log = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), debt_imf_2001 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), debt_imf_2006 = c(22.984644,
22.984644, 22.984644, 22.984644, 22.984644, 22.984644, 22.984644,
22.984644, 22.984644, 22.984644), debt_imf_2011 = c(7.5010844,
7.5010844, 7.5010844, 7.5010844, 7.5010844, 7.5010844, 7.5010844,
7.5010844, 7.5010844, 7.5010844), debt_imf_2016 = c(8.4372661,
8.4372661, 8.4372661, 8.4372661, 8.4372661, 8.4372661, 8.4372661,
8.4372661, 8.4372661, 8.4372661), politics_1996 = c(-1.94518780708313,
-1.94518780708313, -1.94518780708313, -1.94518780708313,
-1.94518780708313, -1.94518780708313, -1.94518780708313,
-1.94518780708313, -1.94518780708313, -1.94518780708313),
politics_2006 = c(-1.63495093584061, -1.63495093584061, -1.63495093584061,
-1.63495093584061, -1.63495093584061, -1.63495093584061,
-1.63495093584061, -1.63495093584061, -1.63495093584061,
-1.63495093584061), politics_2016 = c(-1.55767250061035,
-1.55767250061035, -1.55767250061035, -1.55767250061035,
-1.55767250061035, -1.55767250061035, -1.55767250061035,
-1.55767250061035, -1.55767250061035, -1.55767250061035),
politics_t5 = c(NA, NA, NA, NA, NA, 0.55481219291687, NA,
0.576213538646698, NA, 0.53717170159022), politics_2001 = c(NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA), politics_2011 = c(-1.72906082868576,
-1.72906082868576, -1.72906082868576, -1.72906082868576,
-1.72906082868576, -1.72906082868576, -1.72906082868576,
-1.72906082868576, -1.72906082868576, -1.72906082868576),
politics_t10 = c(NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), debt_imf_2001_log = c(NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), debt_imf_2006_log = c(3.13482634077627, 3.13482634077627,
3.13482634077627, 3.13482634077627, 3.13482634077627, 3.13482634077627,
3.13482634077627, 3.13482634077627, 3.13482634077627, 3.13482634077627
), debt_imf_2011_log = c(2.01504759675729, 2.01504759675729,
2.01504759675729, 2.01504759675729, 2.01504759675729, 2.01504759675729,
2.01504759675729, 2.01504759675729, 2.01504759675729, 2.01504759675729
), debt_imf_2016_log = c(2.13265833433292, 2.13265833433292,
2.13265833433292, 2.13265833433292, 2.13265833433292, 2.13265833433292,
2.13265833433292, 2.13265833433292, 2.13265833433292, 2.13265833433292
), debt_imf_log = c(NA, NA, NA, NA, NA, NA, 5.84637368623429,
5.6006504370586, 5.50112224211777, 5.32960288104705), gdp_pc_t5 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), population_g_t5 = c(NA, NA,
NA, NA, NA, 4.0194777158615, 2.63650176396731, 1.9473438616857,
2.17042851112236, 2.97505722281038), savings_t5 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), inflation_t5 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), unemployment_t5 = c(NA, NA,
NA, NA, NA, 10.9619998931885, 10.7829999923706, 10.8020000457764,
10.8090000152588, 10.8059997558594), crime_t5 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), health_new_t5 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), co2_t5 = c(NA, NA, NA, NA,
NA, 1180, 1100, 1040, 810, 760), debt_imf_t5 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), qualityofgovernment_t5 = c(NA,
NA, NA, NA, NA, -1.94518780708313, NA, -1.9237864613533,
NA, -1.96282829840978), gdp_pc_t5_log = c(NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_), inflation_t5_log = c(NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_), unemployment_t5_log = c(NA, NA, NA,
NA, NA, 2.39443473688013, 2.3779708191924, 2.37973130640847,
2.38037912184574, 2.38010151282881), crime_t5_log = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), health_new_t5_log = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), co2_t5_log = c(NA, NA, NA,
NA, NA, 7.07326971745971, 7.00306545878646, 6.94697599213542,
6.69703424766648, 6.63331843328038), debt_imf_t5_log = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), politics = c(0.55481219291687,
NA, 0.576213538646698, NA, 0.53717170159022, NA, 0.867950379848478,
1.0218425989151, 1.00587892532349, 0.972693979740143), politics_t5_log = c(NA,
NA, NA, NA, NA, -0.589125613643679, NA, -0.551276960171269,
NA, -0.621437493326265), migration_rate = c(1.59, 0.345,
1.934, 4.461, -50.229, -9.717, 65.242, 17.307, -10.498, 10.383
), migration_rate_t5 = c(NA, NA, NA, NA, NA, 1.59, 0.345,
1.934, 4.461, -50.229), inflation_new = c(NA, NA, NA, NA,
NA, NA, NA, 1.11655238211175, 1.11271432071264, 1.10912773553937
), inflation_new_t5 = c(NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), inflation_new_t5_log = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_)), row.names = c(NA, -10L), class = c("tbl_df",
"tbl", "data.frame"))
Step 1 = Done
Now I want to create a new panel dataset such that it has every country of my previous dataset but then only with the years 2017, 2018, 2019, 2020 and 2021.
I want this because I would like to add a new column with the average (over the last 5 years, 2017-2021) of certain variables such as the crime variable of every country in my dataset. For simplicity, we could also use the average over the last 5 years of the population_g.
This is the new dataset which comes from step 1:
structure(list(Country = c("Afghanistan", "Afghanistan", "Afghanistan",
"Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan",
"Afghanistan", "Afghanistan"), CountryCode = c("AFG", "AFG",
"AFG", "AFG", "AFG", "AFG", "AFG", "AFG", "AFG", "AFG"), Time = c("1996",
"1997", "1998", "1999", "2000", "2001", "2002", "2003", "2004",
"2005"), Time.Code = c("YR1996", "YR1997", "YR1998", "YR1999",
"YR2000", "YR2001", "YR2002", "YR2003", "YR2004", "YR2005"),
gdp_pc_g = c(NA, NA, NA, NA, NA, NA, NA, 3.86838029515866,
-2.87520316702623, 7.20796721836321), gdp_pc = c(NA, NA,
NA, NA, NA, NA, 1189.78466765718, 1235.81006329565, 1200.27801321735,
1286.79365893927), population_g = c(4.0194777158615, 2.63650176396731,
1.9473438616857, 2.17042851112236, 2.97505722281038, 3.90280496415438,
4.4967187466326, 4.66834379545461, 4.32155951673842, 3.68269988149014
), savings = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), inflation = c(NA,
NA, NA, NA, NA, NA, NA, 11.655238211175, 11.2714320712639,
10.9127735539374), unemployment = c(10.9619998931885, 10.7829999923706,
10.8020000457764, 10.8090000152588, 10.8059997558594, 10.8090000152588,
11.2569999694824, 11.1409997940063, 10.9879999160767, 11.2170000076294
), crime = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), health = c(NA,
NA, NA, NA, NA, NA, 0.08418062, 0.65096337, 0.5429256, 0.5291841
), health_new = c(NA, NA, NA, NA, NA, NA, 1.21245611, 5.45767879,
3.60296822, 3.37097836), co2 = c(1180, 1100, 1040, 810, 760,
730, 1029.99997138977, 1220.00002861023, 1029.99997138977,
1549.99995231628), debt_wb = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_), debt_imf = c(NA, NA, NA, NA, NA, NA, 345.97748,
270.60236, 244.96669, 206.35601), qualityofgovernment = c(-1.94518780708313,
NA, -1.9237864613533, NA, -1.96282829840978, NA, -1.63204962015152,
-1.4781574010849, -1.49412107467651, -1.52730602025986),
migration = c(27.194, 6.129, 35.74, 85.758, -1007.135, -192.286,
1327.074, 388.632, -248.616, 252.185), gdp_pc_log = c(NA,
NA, NA, NA, NA, NA, 7.08152761818328, 7.11948195573634, 7.09030848662408,
7.15990886757784), gdp_pc_1996 = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_), gdp_pc_1996_log = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_), unemployment_log = c(2.39443473688013, 2.3779708191924,
2.37973130640847, 2.38037912184574, 2.38010151282881, 2.38037912184574,
2.42099015466168, 2.41063197858748, 2.3968037605953, 2.41743048534325
), crime_log = c(NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), health_new_log = c(NA, NA, NA, NA, NA, NA, 0.192648145236196,
1.69702356932679, 1.28175801129963, 1.21520301677122), co2_log = c(7.07326971745971,
7.00306545878646, 6.94697599213542, 6.69703424766648, 6.63331843328038,
6.59304453414244, 6.93731405344676, 7.10660616117831, 6.93731405344676,
7.3460101791496), migration_t5 = c(NA, NA, NA, NA, NA, 27.194,
6.129, 35.74, 85.758, -1007.135), debt_imf_1996 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), debt_imf_1996_log = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), debt_imf_2001 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), debt_imf_2006 = c(22.984644,
22.984644, 22.984644, 22.984644, 22.984644, 22.984644, 22.984644,
22.984644, 22.984644, 22.984644), debt_imf_2011 = c(7.5010844,
7.5010844, 7.5010844, 7.5010844, 7.5010844, 7.5010844, 7.5010844,
7.5010844, 7.5010844, 7.5010844), debt_imf_2016 = c(8.4372661,
8.4372661, 8.4372661, 8.4372661, 8.4372661, 8.4372661, 8.4372661,
8.4372661, 8.4372661, 8.4372661), politics_1996 = c(-1.94518780708313,
-1.94518780708313, -1.94518780708313, -1.94518780708313,
-1.94518780708313, -1.94518780708313, -1.94518780708313,
-1.94518780708313, -1.94518780708313, -1.94518780708313),
politics_2006 = c(-1.63495093584061, -1.63495093584061, -1.63495093584061,
-1.63495093584061, -1.63495093584061, -1.63495093584061,
-1.63495093584061, -1.63495093584061, -1.63495093584061,
-1.63495093584061), politics_2016 = c(-1.55767250061035,
-1.55767250061035, -1.55767250061035, -1.55767250061035,
-1.55767250061035, -1.55767250061035, -1.55767250061035,
-1.55767250061035, -1.55767250061035, -1.55767250061035),
politics_t5 = c(NA, NA, NA, NA, NA, 0.55481219291687, NA,
0.576213538646698, NA, 0.53717170159022), politics_2001 = c(NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA), politics_2011 = c(-1.72906082868576,
-1.72906082868576, -1.72906082868576, -1.72906082868576,
-1.72906082868576, -1.72906082868576, -1.72906082868576,
-1.72906082868576, -1.72906082868576, -1.72906082868576),
politics_t10 = c(NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), debt_imf_2001_log = c(NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), debt_imf_2006_log = c(3.13482634077627, 3.13482634077627,
3.13482634077627, 3.13482634077627, 3.13482634077627, 3.13482634077627,
3.13482634077627, 3.13482634077627, 3.13482634077627, 3.13482634077627
), debt_imf_2011_log = c(2.01504759675729, 2.01504759675729,
2.01504759675729, 2.01504759675729, 2.01504759675729, 2.01504759675729,
2.01504759675729, 2.01504759675729, 2.01504759675729, 2.01504759675729
), debt_imf_2016_log = c(2.13265833433292, 2.13265833433292,
2.13265833433292, 2.13265833433292, 2.13265833433292, 2.13265833433292,
2.13265833433292, 2.13265833433292, 2.13265833433292, 2.13265833433292
), debt_imf_log = c(NA, NA, NA, NA, NA, NA, 5.84637368623429,
5.6006504370586, 5.50112224211777, 5.32960288104705), gdp_pc_t5 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), population_g_t5 = c(NA, NA,
NA, NA, NA, 4.0194777158615, 2.63650176396731, 1.9473438616857,
2.17042851112236, 2.97505722281038), savings_t5 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), inflation_t5 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), unemployment_t5 = c(NA, NA,
NA, NA, NA, 10.9619998931885, 10.7829999923706, 10.8020000457764,
10.8090000152588, 10.8059997558594), crime_t5 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), health_new_t5 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), co2_t5 = c(NA, NA, NA, NA,
NA, 1180, 1100, 1040, 810, 760), debt_imf_t5 = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), qualityofgovernment_t5 = c(NA,
NA, NA, NA, NA, -1.94518780708313, NA, -1.9237864613533,
NA, -1.96282829840978), gdp_pc_t5_log = c(NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_), inflation_t5_log = c(NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_), unemployment_t5_log = c(NA, NA, NA,
NA, NA, 2.39443473688013, 2.3779708191924, 2.37973130640847,
2.38037912184574, 2.38010151282881), crime_t5_log = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), health_new_t5_log = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), co2_t5_log = c(NA, NA, NA,
NA, NA, 7.07326971745971, 7.00306545878646, 6.94697599213542,
6.69703424766648, 6.63331843328038), debt_imf_t5_log = c(NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), politics = c(0.55481219291687,
NA, 0.576213538646698, NA, 0.53717170159022, NA, 0.867950379848478,
1.0218425989151, 1.00587892532349, 0.972693979740143), politics_t5_log = c(NA,
NA, NA, NA, NA, -0.589125613643679, NA, -0.551276960171269,
NA, -0.621437493326265), migration_rate = c(1.59, 0.345,
1.934, 4.461, -50.229, -9.717, 65.242, 17.307, -10.498, 10.383
), migration_rate_t5 = c(NA, NA, NA, NA, NA, 1.59, 0.345,
1.934, 4.461, -50.229), inflation_new = c(NA, NA, NA, NA,
NA, NA, NA, 1.11655238211175, 1.11271432071264, 1.10912773553937
), inflation_new_t5 = c(NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), inflation_new_t5_log = c(NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_)), row.names = c(NA, -10L), class = c("tbl_df",
"tbl", "data.frame"))
CodePudding user response:
library(tidyverse)
df %>%
type_convert() %>%
filter(between(Time, 2017, 2021))
CodePudding user response:
Slightly different approach: In your example data, after filtering no data will be left, therefore we can't calculate the average.
library(stringr)
library(dplyr)
df %>%
filter(grepl(paste(2017:2021, collapse = "|"), Time)) %>%
type.convert(as.is = TRUE)
Example for year 2003 to 2005:
df %>%
filter(grepl(paste(2003:2005, collapse = "|"), Time)) %>%
type.convert(as.is = TRUE) %>%
group_by(Time, Country) %>%
summarise(across(c(gdp_pc_g, gdp_pc), ~mean(.), .names = "mean_{col}"))
Time Country mean_gdp_pc_g mean_gdp_pc
<int> <chr> <dbl> <dbl>
1 2003 Afghanistan 3.87 1236.
2 2004 Afghanistan -2.88 1200.
3 2005 Afghanistan 7.21 1287.