Home > Software engineering >  Tensorflow condition x==y error: A InvalidArgumentError
Tensorflow condition x==y error: A InvalidArgumentError

Time:11-11

I am seeking for help of the error I am getting. I want output as 3 multi-class-category. So what I did to append those output and created a custom loss function to handle it. But it seems I am getting stuck with the shape.

class Model(keras.Model):
def __init__(self):
    super(Model, self).__init__()
    self.dense1 = layers.Dense(10, input_shape=(1, 5), activation="relu")
    self.l = []
    self.u = layers.Dense(4, activation="softmax")
    self.l.append(self.u)
    self.c = layers.Dense(4, activation="softmax")
    self.l.append(self.c)
    self.k = layers.Dense(4, activation="softmax")
    self.l.append(self.k)
    self.outputs = layers.Concatenate()

def call(self, inputs):
    x = tf.convert_to_tensor(inputs)
    x = self.dense1(x)
    ls = []
    u = self.u(x)
    ls.append(u)
    c = self.c(x)
    ls.append(c)
    k = self.k(x)
    ls.append(k)
    return self.outputs(ls)

def process(self, observations):
    action_probs = self.predict_on_batch(observations)
    return action_probs

This is the custom_cross_entropy I used which is concatination of 3 sparse_categorical_crossentropy:

def custom_cross_entropy(y_true, y_pred):
l = []
for i in range(3):
    l.append(tf.keras.metrics.sparse_categorical_crossentropy(y_true[:,i].reshape((-1,1)), y_pred[:, 4 * i: 4 * (i 1)].reshape(-1, 1, 4), from_logits=False, axis=-1))
return K.concatenate(l).reshape((-1,1))

I have created a dummy data to show the output.

X = [[[1, 2, 3, 4, 5]], [[1, 2, 3, 4, 5]], [[1, 2, 3, 4, 5]], [[1, 2, 3, 4, 5]], [[1, 2, 3, 4, 5]], [[1, 2, 3, 4, 5]]]
y_t = [[0, 1, 3], [0, 2, 1], [2, 1, 1], [1, 2, 0], [1, 2, 3], [1, 2, 1]]

This is the error I am getting. It seems the model is trying to use each value as y_true value which I did not understand why.

model = Model()
model.compile(loss=custom_cross_entropy, optimizer='adam', metrics=['accuracy'])
model.fit(X, y_t, epochs=5)

Console Showing:

Epoch 1/5
---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
~\AppData\Local\Temp/ipykernel_37044/2147060259.py in <module>
----> 1 model.fit(X, y_t, epochs=5)

~\anaconda3\lib\site-packages\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
   1182                 _r=1):
   1183               callbacks.on_train_batch_begin(step)
-> 1184               tmp_logs = self.train_function(iterator)
   1185               if data_handler.should_sync:
   1186                 context.async_wait()

~\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in __call__(self, *args, **kwds)
    883 
    884       with OptionalXlaContext(self._jit_compile):
--> 885         result = self._call(*args, **kwds)
    886 
    887       new_tracing_count = self.experimental_get_tracing_count()

~\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
    948         # Lifting succeeded, so variables are initialized and we can run the
    949         # stateless function.
--> 950         return self._stateless_fn(*args, **kwds)
    951     else:
    952       _, _, _, filtered_flat_args = \

~\anaconda3\lib\site-packages\tensorflow\python\eager\function.py in __call__(self, *args, **kwargs)
   3037       (graph_function,
   3038        filtered_flat_args) = self._maybe_define_function(args, kwargs)
-> 3039     return graph_function._call_flat(
   3040         filtered_flat_args, captured_inputs=graph_function.captured_inputs)  # pylint: disable=protected-access
   3041 

~\anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _call_flat(self, args, captured_inputs, cancellation_manager)
   1961         and executing_eagerly):
   1962       # No tape is watching; skip to running the function.
-> 1963       return self._build_call_outputs(self._inference_function.call(
   1964           ctx, args, cancellation_manager=cancellation_manager))
   1965     forward_backward = self._select_forward_and_backward_functions(

~\anaconda3\lib\site-packages\tensorflow\python\eager\function.py in call(self, ctx, args, cancellation_manager)
    589       with _InterpolateFunctionError(self):
    590         if cancellation_manager is None:
--> 591           outputs = execute.execute(
    592               str(self.signature.name),
    593               num_outputs=self._num_outputs,

~\anaconda3\lib\site-packages\tensorflow\python\eager\execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
     57   try:
     58     ctx.ensure_initialized()
---> 59     tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
     60                                         inputs, attrs, num_outputs)
     61   except core._NotOkStatusException as e:

InvalidArgumentError:  assertion failed: [Condition x == y did not hold element-wise:] [x (custom_cross_entropy/SparseSoftmaxCrossEntropyWithLogits/Shape_1:0) = ] [6 1] [y (custom_cross_entropy/SparseSoftmaxCrossEntropyWithLogits/strided_slice:0) = ] [18 1]
     [[node custom_cross_entropy/SparseSoftmaxCrossEntropyWithLogits/assert_equal_1/Assert/Assert (defined at \AppData\Local\Temp/ipykernel_37044/2925072780.py:6) ]] [Op:__inference_train_function_51479]

Function call stack:
train_function

Any suggestion to fix the issue is welcome.

CodePudding user response:

I think you are addressing the wrong dimension in your custom_cross_entropy function. Maybe try something like this:

import tensorflow as tf

class Model(tf.keras.Model):
  def __init__(self):
      super(Model, self).__init__()
      self.dense1 = tf.keras.layers.Dense(10, input_shape=(1, 5), activation="relu")
      self.l = []
      self.u = tf.keras.layers.Dense(4, activation="softmax")
      self.l.append(self.u)
      self.c = tf.keras.layers.Dense(4, activation="softmax")
      self.l.append(self.c)
      self.k = tf.keras.layers.Dense(4, activation="softmax")
      self.l.append(self.k)
      self.outputs = tf.keras.layers.Concatenate()

  def call(self, inputs):
      x = tf.convert_to_tensor(inputs)
      x = self.dense1(x)
      ls = []
      u = self.u(x)
      ls.append(u)
      c = self.c(x)
      ls.append(c)
      k = self.k(x)
      ls.append(k)
      return self.outputs(ls)

  def process(self, observations):
      action_probs = self.predict_on_batch(observations)
      return action_probs

def custom_cross_entropy(y_true, y_pred):
  l = []
  for i in range(3):
      temp_y_true = tf.reshape(y_true[:,i], (-1,1))
      temp_y_pred = tf.reshape(y_pred[:, :, 4 * i: 4 * (i 1)],(-1, 1, 4))
      tf.print('Fixed solution ::: Y_true -->', tf.shape(temp_y_true), 'Y_pred -->', tf.shape(temp_y_pred))

      temp_y_true_wrong = tf.reshape(y_true[:,i], (-1,1))
      temp_y_pred_wrong = tf.reshape(y_pred[:, 4 * i: 4 * (i 1)],(-1, 1, 4))
      tf.print('Wrong solution ::: Y_true -->', tf.shape(temp_y_true_wrong), 'Y_pred -->', tf.shape(temp_y_pred_wrong))

      l.append(tf.keras.metrics.sparse_categorical_crossentropy(temp_y_true, temp_y_pred, from_logits=False, axis=-1))
  return tf.reshape(tf.keras.backend.concatenate(l), (-1,1))

X = [[[1, 2, 3, 4, 5]], [[1, 2, 3, 4, 5]], [[1, 2, 3, 4, 5]], [[1, 2, 3, 4, 5]], [[1, 2, 3, 4, 5]], [[1, 2, 3, 4, 5]]]
y_t = [[0, 1, 3], [0, 2, 1], [2, 1, 1], [1, 2, 0], [1, 2, 3], [1, 2, 1]]

model = Model()
model.compile(loss=custom_cross_entropy, optimizer='adam', metrics=['accuracy'])
model.fit(X, y_t, epochs=5)
Epoch 1/5
Fixed solution ::: Y_true --> [6 1] Y_pred --> [6 1 4]
Wrong solution ::: Y_true --> [6 1] Y_pred --> [18 1 4]
...
  • Related