I have found several answers to this both here on Stackoverflow and other sites.
However, I keep running into errors I can't resolve.
- If I fillna using this, it works fine, but this is just the column mode. It is not grouped.
df['installer'] = df['installer'].fillna(df['installer'].value_counts().idxmax())
- If I try grouping with this syntax:
df['installer'] = df.groupby(['region', 'basin'], sort=False)['installer'].apply(
lambda x: x.fillna(x.mode()[0]))
I get this error:
KeyError: 0
- If I try grouping with this, slightly different syntax:
df['installer'] = df.groupby(['region', 'basin'], sort=False)['installer'].apply(
lambda x: x.fillna(x.mode().iloc[0]))
I get this error:
IndexError: single positional indexer is out-of-bounds
Removing sort=False changes nothing.
Extra info:
df['installer'] = df['installer'].astype(str).str.lower()
print(df['installer'].isnull().sum(), '\n') # zero nulls at this point
df.loc[df['installer'] == '0', 'installer'] = np.nan
df.loc[df['installer'] == 'nan', 'installer'] = np.nan
df.loc[df['installer'] == '-', 'installer'] = np.nan
# df['installer'] = df['installer'].fillna(df['installer'].value_counts().idxmax())
print(df['installer'].isnull().sum(), '\n') # 4435 null values here
print(df3['installer'].value_counts().nlargest(25), '\n')
df['installer'] = df.groupby(['region', 'basin'], sort=False)['installer'].apply(
lambda x: x.fillna(x.mode().iloc[0]))
# df['installer'] = df.groupby(['region', 'district_code', 'lga'])['installer'].fillna(df['installer'].value_counts().idxmax())
print(df['installer'].isnull().sum(), '\n')
print(df['installer'].value_counts().nlargest(25), '\n')
CodePudding user response:
Use transform
:
vals = df.groupby(['region', 'basin'])['installer'] \
.transform(lambda x: x.mode(dropna=False).iloc[0])
df['installer'] = df['installer'].fillna(vals)