I have a dataframe :
import pandas as pd
data = {'token_1': [['cat', 'run','today'],['dog', 'eat', 'meat']],
'token_2': [[ 'in', 'the' , 'morning','cat', 'run', 'today',
'very', 'quick'],['dog', 'eat', 'meat', 'chicken', 'from', 'bowl']]}
df = pd.DataFrame(data)
I need to find words from column token_1
in token_2
and get their indixes in an array.
Then get a list of indexes for each line, i expected this:
lst_indexes = [[3,4,5],
[0,1,2]]
CodePudding user response:
Use list comprehension with enumerate
for indices:
L = [[i for i, x in enumerate(b) if x in a] for a, b in zip(df['token_1'], df['token_2'])]
print (L)
[[3, 4, 5], [0, 1, 2]]
CodePudding user response:
You can use a dictionary/list comprehension:
# first compute a dictionary of indices for efficiency
indices = [{w: i for i,w in enumerate(l)} for l in df['token_2']]
# then map the indices
[[d.get(x,None) for x in l] for d, l in zip(indices, df['token_1'])]
output:
[[3, 4, 5], [0, 1, 2]]
CodePudding user response:
You can traverse data
dictionary and append values to a new list:
data = {'token_1': [['cat', 'run','today'],['dog', 'eat', 'meat']],
'token_2': [[ 'in', 'the' , 'morning','cat', 'run', 'today',
'very', 'quick'],['dog', 'eat', 'meat', 'chicken', 'from', 'bowl']]}
l = []
for i in range(len(data["token_1"])):
l.append([])
for j in range(len(data["token_1"][i])):
a = data["token_2"][i].index(data["token_1"][i][j])
if a!=-1:
l[i].append(a)
print(l)
Note that the other solutions look much more clear and readable, this is only an alternative to list comprehension
Output:
[[3, 4, 5], [0, 1, 2]]