I have a such line of code:
df_append.groupby(['user_id', 'date'])['money'].sum()
It gives me such results:
user_id date
1 20210701 7169.21
20210702 7988.33
20210703 7326.52
20210704 6281.38
20210705 5561.10
...
1031536 20220626 5162.35
20220627 4522.90
20220628 5028.58
20220629 5694.28
20220630 6487.43
But now I want a median value for all those dates. I am not really sure how to do it. I tried .median() after .sum() but it gives me one value instead of one median value for a specific user.
CodePudding user response:
use .agg:
df_append.groupby(['user_id', 'date'])['money'].agg(['sum', 'median']).droplevel(0, axis=1)
CodePudding user response:
This was the result that I wanted to achieve - figured it out:
transactions_df['sum median daily'] = (df_append.groupby(['user_id', 'date'])['money'].sum().to_frame(name = 'sum').reset_index()).groupby('user_id')['sum'].median()