I have medical data split into two different CSVs, and I need to merge them. One data set contains basic demographic information, and the second contains diagnosis codes. Each patient is assigned a unique identification number called INC_KEY, which I've simplified to simple numbers, as shown in this example:
df1:
INC_KEY SEX AGE
1 F 40
2 F 24
3 M 66
df2:
INC_KEY DCODE
1 BW241ZZ
1 BW28ZZZ
2 0BH17EZ
3 05H633Z
2 4A103BD
3 BR30ZZZ
1 BF42ZZZ
I need to merge the two dataframes with the output containing the three rows as seen in df1 with appended columns for each dcode respective to that patient. Like this:
INC_KEY SEX AGE DCODE1 DCODE2 DCODE3
1 F 40 BW241ZZ BW28ZZZ BF42ZZZ
2 F 24 0BH17EZ 4A103BD N/A
3 M 66 05H633Z BR30ZZZ N/A
How can I go about this? I've tried to do a left merge but it does not give the result I am looking for.
CodePudding user response:
You can combine the two dataframes on the INC_KEY
column using .merge
. Then, you can use .groupby()
and pd.concat()
to turn individual rows into the desired columns. Finally, you can drop the original "DCODE"
column using .drop()
:
df = df1.merge(df2, on="INC_KEY", how="right")
df = df.groupby(["INC_KEY", "SEX", "AGE"]).agg({"DCODE": list}).reset_index()
df = pd.concat(
(df, pd.DataFrame(df["DCODE"].values.tolist()).add_prefix("DCODE")),
axis=1
)
df = df.drop("DCODE", axis=1)
This outputs:
INC_KEY SEX AGE DCODE0 DCODE1 DCODE2
0 1 F 40 BW241ZZ BW28ZZZ BF42ZZZ
1 2 F 24 0BH17EZ 4A103BD None
2 3 M 66 05H633Z BR30ZZZ None
CodePudding user response:
Here's another way:
df_out = df1.merge(df2, on='INC_KEY')
df_out = df_out.set_index(['INC_KEY', 'SEX', 'AGE', df_out.groupby('INC_KEY').cumcount()]).unstack()
df_out.columns = [f'{i}{j}' for i, j in df_out.columns]
df_out.reset_index()
Output:
INC_KEY SEX AGE DCODE0 DCODE1 DCODE2
0 1 F 40 BW241ZZ BW28ZZZ BF42ZZZ
1 2 F 24 0BH17EZ 4A103BD NaN
2 3 M 66 05H633Z BR30ZZZ NaN