This is how my data looks like:
> dput(head(h01_NDVI_specveg_data_spectra,6))
structure(list(ID = c("h01", "h01", "h01", "h01", "h01", "h01"
), collection_date = structure(c(15076, 15092, 15125, 15139,
15159, 15170), class = "Date"), NDVI = c(0.581769436997319, 0.539445628997868,
0.338541666666667, 0.302713987473904, 0.305882352941176, 0.269439421338155
)), row.names = c(NA, -6L), class = c("tbl_df", "tbl", "data.frame"))
I have separate dates without order as you can see in the example (ex.: 2011-04-12; 2011-04-28; 2011-05-31...). What I want is to insert the missing dates between the dates that I have. On top of that, consequently, I want to create new rows for the other columns, where for NDVI those rows would be NA
.
Check this example of the desired output:
ID | collection_date | NDVI |
---|---|---|
h01 | 2011-04-12 | 0.5817694 |
h01 | 2011-04-13 | NA |
h01 | 2011-04-14 | NA |
h01 | 2011-04-15 | NA |
h01 | 2011-04-16 | NA |
h01 | 2011-04-17 | NA |
h01 | 2011-04-18 | NA |
h01 | 2011-04-19 | NA |
h01 | 2011-04-20 | NA |
h01 | 2011-04-21 | NA |
h01 | 2011-04-22 | NA |
h01 | 2011-04-23 | NA |
h01 | 2011-04-24 | NA |
h01 | 2011-04-25 | NA |
h01 | 2011-04-26 | NA |
h01 | 2011-04-27 | NA |
h01 | 2011-04-28 | 0.5394456 |
h01 | 2011-04-29 | NA |
h01 | 2011-04-30 | NA |
... | .......... | .. |
Any help will be much appreciated.
CodePudding user response:
df1 <- structure(list(ID = c("h01", "h01", "h01", "h01", "h01", "h01"),
collection_date = structure(c(15076, 15092, 15125, 15139,
15159, 15170), class = "Date"),
NDVI = c(0.581769436997319, 0.539445628997868, 0.338541666666667, 0.302713987473904, 0.305882352941176, 0.269439421338155)),
row.names = c(NA, -6L), class = c("data.frame"))
We create a data.frame containing all dates and tidyr::left_join
it with the existing (incomplete) data. The NA are created automatically.
library(dplyr)
library(tidyr)
data.frame(collection_date = seq.Date(min(df1$collection_date), max(df1$collection_date), "days")) %>%
left_join(df1) %>%
arrange(collection_date) %>%
select(ID, collection_date, everything())
Returns:
ID collection_date NDVI
1 h01 2011-04-12 0.5817694
2 <NA> 2011-04-13 NA
3 <NA> 2011-04-14 NA
4 <NA> 2011-04-15 NA
5 <NA> 2011-04-16 NA
6 <NA> 2011-04-17 NA
7 <NA> 2011-04-18 NA
8 <NA> 2011-04-19 NA
9 <NA> 2011-04-20 NA
10 <NA> 2011-04-21 NA
11 <NA> 2011-04-22 NA
12 <NA> 2011-04-23 NA
13 <NA> 2011-04-24 NA
14 <NA> 2011-04-25 NA
15 <NA> 2011-04-26 NA
16 <NA> 2011-04-27 NA
17 h01 2011-04-28 0.5394456
18 <NA> 2011-04-29 NA
19 <NA> 2011-04-30 NA
20 <NA> 2011-05-01 NA
21 <NA> 2011-05-02 NA
22 <NA> 2011-05-03 NA
23 <NA> 2011-05-04 NA
24 <NA> 2011-05-05 NA
25 <NA> 2011-05-06 NA
26 <NA> 2011-05-07 NA
27 <NA> 2011-05-08 NA
28 <NA> 2011-05-09 NA
29 <NA> 2011-05-10 NA
30 <NA> 2011-05-11 NA
31 <NA> 2011-05-12 NA
32 <NA> 2011-05-13 NA
33 <NA> 2011-05-14 NA
34 <NA> 2011-05-15 NA
35 <NA> 2011-05-16 NA
36 <NA> 2011-05-17 NA
37 <NA> 2011-05-18 NA
38 <NA> 2011-05-19 NA
39 <NA> 2011-05-20 NA
40 <NA> 2011-05-21 NA
41 <NA> 2011-05-22 NA
42 <NA> 2011-05-23 NA
43 <NA> 2011-05-24 NA
44 <NA> 2011-05-25 NA
45 <NA> 2011-05-26 NA
46 <NA> 2011-05-27 NA
47 <NA> 2011-05-28 NA
48 <NA> 2011-05-29 NA
49 <NA> 2011-05-30 NA
50 h01 2011-05-31 0.3385417
51 <NA> 2011-06-01 NA
52 <NA> 2011-06-02 NA
53 <NA> 2011-06-03 NA
54 <NA> 2011-06-04 NA
55 <NA> 2011-06-05 NA
56 <NA> 2011-06-06 NA
57 <NA> 2011-06-07 NA
58 <NA> 2011-06-08 NA
59 <NA> 2011-06-09 NA
60 <NA> 2011-06-10 NA
61 <NA> 2011-06-11 NA
62 <NA> 2011-06-12 NA
63 <NA> 2011-06-13 NA
64 h01 2011-06-14 0.3027140
65 <NA> 2011-06-15 NA
66 <NA> 2011-06-16 NA
67 <NA> 2011-06-17 NA
68 <NA> 2011-06-18 NA
69 <NA> 2011-06-19 NA
70 <NA> 2011-06-20 NA
71 <NA> 2011-06-21 NA
72 <NA> 2011-06-22 NA
73 <NA> 2011-06-23 NA
74 <NA> 2011-06-24 NA
75 <NA> 2011-06-25 NA
76 <NA> 2011-06-26 NA
77 <NA> 2011-06-27 NA
78 <NA> 2011-06-28 NA
79 <NA> 2011-06-29 NA
80 <NA> 2011-06-30 NA
81 <NA> 2011-07-01 NA
82 <NA> 2011-07-02 NA
83 <NA> 2011-07-03 NA
84 h01 2011-07-04 0.3058824
85 <NA> 2011-07-05 NA
86 <NA> 2011-07-06 NA
87 <NA> 2011-07-07 NA
88 <NA> 2011-07-08 NA
89 <NA> 2011-07-09 NA
90 <NA> 2011-07-10 NA
91 <NA> 2011-07-11 NA
92 <NA> 2011-07-12 NA
93 <NA> 2011-07-13 NA
94 <NA> 2011-07-14 NA
95 h01 2011-07-15 0.2694394
Edit:
In order to have ID = "h01" everywhere we just add it to the constructed data.frame. I.e.:
library(dplyr)
library(tidyr)
data.frame(collection_date = seq.Date(min(df1$collection_date), max(df1$collection_date), "days"),
ID = "h01") %>%
left_join(df1) %>%
arrange(collection_date) %>%
select(ID, collection_date, everything())
CodePudding user response:
library(tidyverse)
library(lubridate)
df = structure(list(ID = c("h01", "h01", "h01", "h01", "h01", "h01"
), collection_date = structure(c(15076, 15092, 15125, 15139,
15159, 15170), class = "Date"), NDVI = c(0.581769436997319, 0.539445628997868,
0.338541666666667, 0.302713987473904, 0.305882352941176, 0.269439421338155
)), row.names = c(NA, -6L), class = c("tbl_df", "tbl", "data.frame"))
df2 = tibble(
ID = "h01",
collection_date = seq(ymd("2011-04-10"), ymd("2011-07-16"), 1)
) %>% left_join(df, by = c("ID", "collection_date"))
df2 %>% head(10)
output
# A tibble: 98 x 3
ID collection_date NDVI
<chr> <date> <dbl>
1 h01 2011-04-10 NA
2 h01 2011-04-11 NA
3 h01 2011-04-12 0.582
4 h01 2011-04-13 NA
5 h01 2011-04-14 NA
6 h01 2011-04-15 NA
7 h01 2011-04-16 NA
8 h01 2011-04-17 NA
9 h01 2011-04-18 NA
10 h01 2011-04-19 NA
# ... with 88 more rows
output df2 %>% tail(10)
# A tibble: 10 x 3
ID collection_date NDVI
<chr> <date> <dbl>
1 h01 2011-07-07 NA
2 h01 2011-07-08 NA
3 h01 2011-07-09 NA
4 h01 2011-07-10 NA
5 h01 2011-07-11 NA
6 h01 2011-07-12 NA
7 h01 2011-07-13 NA
8 h01 2011-07-14 NA
9 h01 2011-07-15 0.269
10 h01 2011-07-16 NA