How would I be able to write a code that outputs the differences between dates
and data
. There are missing data points in the data
code where there is a skip in the dates
data frame of the 1 minute timeframe. For example after 2015-10-08 13:53:00
there are 6 data points that are missing so it prints it as '2015-10-08 13:54:00', '2015-10-08 14:00:00'
outputs the range of missing data
. records it in the 2 dimensional array down in The Expected Output
. How would I be able to code a function that results in the Expected Output.
import pandas as pd
import datetime
dates = pd.date_range("2015-10-08 13:40:00", "2015-10-08 14:12:00", freq="1min")
data = pd.to_datetime(['2015-10-08 13:41:00',
'2015-10-08 13:42:00', '2015-10-08 13:43:00',
'2015-10-08 13:44:00', '2015-10-08 13:45:00',
'2015-10-08 13:46:00', '2015-10-08 13:47:00',
'2015-10-08 13:48:00', '2015-10-08 13:49:00',
'2015-10-08 13:50:00', '2015-10-08 13:51:00',
'2015-10-08 13:52:00', '2015-10-08 13:53:00',
'2015-10-08 13:54:00', '2015-10-08 14:01:00',
'2015-10-08 14:02:00', '2015-10-08 14:03:00',
'2015-10-08 14:04:00', '2015-10-08 14:05:00',
'2015-10-08 14:06:00', '2015-10-08 14:07:00',
'2015-10-08 14:10:00', '2015-10-08 14:11:00',
'2015-10-08 14:12:00'])
Expected Output:
[['2015-10-08 13:40:00'],
['2015-10-08 13:54:00', '2015-10-08 14:00:00'],
['2015-10-08 14:08:00', '2015-10-08 14:09:00']]
CodePudding user response:
dates
and data
here are both datetimeindexes. You can take the difference of these using pd.Index.difference
In [55]: s = pd.Series(dates.difference(data))
...: s # sort if needed
Out[55]:
0 2015-10-08 13:40:00
1 2015-10-08 13:55:00
2 2015-10-08 13:56:00
3 2015-10-08 13:57:00
4 2015-10-08 13:58:00
5 2015-10-08 13:59:00
6 2015-10-08 14:00:00
7 2015-10-08 14:08:00
8 2015-10-08 14:09:00
dtype: datetime64[ns]
In [56]: groups_diff_ne_1min = s.diff().fillna(pd.Timedelta(seconds=60)) != pd.Timedelta(seconds=60)
...: groups_diff_ne_1min
Out[56]:
0 False
1 True
2 False
3 False
4 False
5 False
6 False
7 True
8 False
dtype: bool
In [57]: groups = groups_diff_ne_1min.cumsum()
...: groups
Out[57]:
0 0
1 1
2 1
3 1
4 1
5 1
6 1
7 2
8 2
dtype: int64
In [58]: s.groupby(groups).agg(['first', 'last'])
Out[58]:
first last
0 2015-10-08 13:40:00 2015-10-08 13:40:00
1 2015-10-08 13:55:00 2015-10-08 14:00:00
2 2015-10-08 14:08:00 2015-10-08 14:09:00