I train the following model based on GRU, note that I am passing the argument stateful=True
to the GRU builder.
class LearningToSurpriseModel(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, rnn_units):
super().__init__(self)
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.gru = tf.keras.layers.GRU(rnn_units,
stateful=True,
return_sequences=True,
return_state=True,
reset_after=True
)
self.dense = tf.keras.layers.Dense(vocab_size)
def call(self, inputs, states=None, return_state=False, training=False):
x = inputs
x = self.embedding(x, training=training)
if states is None:
states = self.gru.get_initial_state(x)
x, states = self.gru(x, initial_state=states, training=training)
x = self.dense(x, training=training)
if return_state:
return x, states
else:
return x
@tf.function
def train_step(self, inputs):
[defining here my training step]
I instantiate my model
model = LearningToSurpriseModel(
vocab_size=len(ids_from_chars.get_vocabulary()),
embedding_dim=embedding_dim,
rnn_units=rnn_units
)
[compile and do stuff] the custom callback below reset states manually at the end of each epoch.
gru_layer = model.layers[1]
class CustomCallback(tf.keras.callbacks.Callback):
def __init__(self, gru_layer):
self.gru_layer = gru_layer
def on_epoch_end(self, epoch, logs=None):
self.gru_layer.reset_states()
model.fit(train_dataset, validation_data=validation_dataset, \
epochs=EPOCHS, callbacks = [EarlyS, CustomCallback(gru_layer)], verbose=1)
States will be reset to zero. I would like to follow ideas in https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html to make states trainable. Implementation in this post seems based on tensorflow, and overwrites native functions, maybe there is a more elegant way in Keras.
(1) how do I make states trainable ?
(2) how do I combine trainable states and random initialization ?
CodePudding user response:
You could try defining a custom GRU
layer with a trainable variable for the states but not sure how the performance will be:
import tensorflow as tf
class CustomGRULayer(tf.keras.layers.Layer):
def __init__(self, rnn_units, batch_size):
super(CustomGRULayer, self).__init__()
self.rnn_units = rnn_units
self.batch_size = batch_size
self.gru = tf.keras.layers.GRU(self.rnn_units,
stateful=True,
return_sequences=True,
return_state=True,
reset_after=True
)
def build(self, input_shape):
w_init = tf.random_normal_initializer(mean=0.0, stddev=0.01)
self.w = tf.Variable(
initial_value=w_init(shape=(self.batch_size, self.rnn_units),
dtype='float32'), trainable=True, constraint=lambda z: tf.clip_by_value(z, 0.0, 0.1))
def call(self, inputs):
return self.gru(inputs, initial_state = self.w)
class CustomCallback(tf.keras.callbacks.Callback):
def __init__(self, gru_layer):
self.gru_layer = gru_layer
def on_epoch_end(self, epoch, logs=None):
self.gru_layer.gru.reset_states(self.gru_layer.w)
batch_size = 2
gru_layer = CustomGRULayer(rnn_units = 32, batch_size = batch_size)
inputs = tf.keras.layers.Input(batch_shape=(batch_size, 5, 10))
x, _ = gru_layer(inputs)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(units=1)(x)
model = tf.keras.Model(inputs, x)
model.compile(loss=tf.keras.losses.BinaryCrossentropy())
x_train = tf.random.normal((10, 5, 10))
print(model.summary())
model.fit(x_train, tf.random.uniform((10, 1), maxval=2), epochs=10, batch_size=batch_size, callbacks = [CustomCallback(gru_layer)])
Model: "model_11"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_19 (InputLayer) [(2, 5, 10)] 0
custom_gru_layer_16 (Custom [(2, 5, 32), 4288
GRULayer) (2, 32)]
flatten_11 (Flatten) (2, 160) 0
dense_11 (Dense) (2, 1) 161
=================================================================
Total params: 4,449
Trainable params: 4,449
Non-trainable params: 0
_________________________________________________________________
None
Epoch 1/10
5/5 [==============================] - 2s 4ms/step - loss: 10.7969
Epoch 2/10
5/5 [==============================] - 0s 5ms/step - loss: 8.6558
Epoch 3/10
5/5 [==============================] - 0s 6ms/step - loss: 8.1546
Epoch 4/10
5/5 [==============================] - 0s 4ms/step - loss: 4.9713
Epoch 5/10
5/5 [==============================] - 0s 4ms/step - loss: 4.7329
Epoch 6/10
5/5 [==============================] - 0s 4ms/step - loss: 4.1399
Epoch 7/10
5/5 [==============================] - 0s 4ms/step - loss: 3.9296
Epoch 8/10
5/5 [==============================] - 0s 4ms/step - loss: 4.3430
Epoch 9/10
5/5 [==============================] - 0s 5ms/step - loss: 3.7707
Epoch 10/10
5/5 [==============================] - 0s 5ms/step - loss: 3.7045
<keras.callbacks.History at 0x7f940546b210>
Or without a custom layer:
import tensorflow as tf
class CustomCallback(tf.keras.callbacks.Callback):
def __init__(self, gru_layer, w):
self.gru_layer = gru_layer
self.w = w
def on_epoch_end(self, epoch, logs=None):
self.gru_layer.reset_states(self.w)
batch_size = 2
w_init = tf.random_normal_initializer(mean=0.0, stddev=0.01)
w = tf.Variable(
initial_value=w_init(shape=(batch_size, 32),
dtype='float32'), trainable=True, constraint=lambda z: tf.clip_by_value(z, 0.0, 0.1))
gru_layer = tf.keras.layers.GRU(32, stateful=True, return_sequences=True, return_state=True, reset_after=True)
inputs = tf.keras.layers.Input(batch_shape=(batch_size, 5, 10))
x, _ = gru_layer(inputs, initial_state = w)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(units=1)(x)
model = tf.keras.Model(inputs, x)
model.compile(loss=tf.keras.losses.BinaryCrossentropy())
x_train = tf.random.normal((10, 5, 10))
print(model.summary())
model.fit(x_train, tf.random.uniform((10, 1), maxval=2), epochs=10, batch_size=batch_size, callbacks = [CustomCallback(gru_layer, w)])