I train the following model based on GRU, note that I am passing the argument stateful=True
to the GRU builder.
class LearningToSurpriseModel(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, rnn_units):
super().__init__(self)
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.gru = tf.keras.layers.GRU(rnn_units,
stateful=True,
return_sequences=True,
return_state=True,
reset_after=True
)
self.dense = tf.keras.layers.Dense(vocab_size)
def call(self, inputs, states=None, return_state=False, training=False):
x = inputs
x = self.embedding(x, training=training)
if states is None:
states = self.gru.get_initial_state(x)
x, states = self.gru(x, initial_state=states, training=training)
x = self.dense(x, training=training)
if return_state:
return x, states
else:
return x
@tf.function
def train_step(self, inputs):
[defining here my training step]
I instantiate my model
model = LearningToSurpriseModel(
vocab_size=len(ids_from_chars.get_vocabulary()),
embedding_dim=embedding_dim,
rnn_units=rnn_units
)
[compile and do stuff] the custom callback below reset states manually at the end of each epoch.
gru_layer = model.layers[1]
class CustomCallback(tf.keras.callbacks.Callback):
def __init__(self, gru_layer):
self.gru_layer = gru_layer
def on_epoch_end(self, epoch, logs=None):
self.gru_layer.reset_states()
model.fit(train_dataset, validation_data=validation_dataset, \
epochs=EPOCHS, callbacks = [EarlyS, CustomCallback(gru_layer)], verbose=1)
States will be reset to zero. I would like to follow ideas in https://r2rt.com/non-zero-initial-states-for-recurrent-neural-networks.html to (re)initialize states to a random noise. What would be a good implementation for random noise?
Should I overwrite reset_states()
adding a states
parameter ?
CodePudding user response:
You can try using tf.random.normal
:
self.gru_layer.reset_states(tf.random.normal((batch_size, rnn_units)))
Or
self.gru_layer.reset_states(tf.random.uniform((batch_size, rnn_units)))
So, your Callback
could look like this:
import tensorflow as tf
class CustomCallback(tf.keras.callbacks.Callback):
def __init__(self, gru_layer, batch_size, dims):
self.gru_layer = gru_layer
self.batch_size = batch_size
self.dims = dims
def on_epoch_end(self, epoch, logs=None):
self.gru_layer.reset_states(tf.random.normal((self.batch_size, self.dims)))