I have some text in blue #00a2e8, and some text in black on a PNG image (white background).
How to remove everything in blue (including text in blue) on an image with Python PIL or OpenCV, with a certain tolerance for the variations of color?
Indeed, every pixel of the text is not perfectly of the same color, there are variations, shades of blue.
Here is what I was thinking:
- convert from RGB to HSV
- find the Hue
h0
for the blue - do a Numpy mask for Hue in the interval
[h0-10, h0 10]
- set these pixels to white
Before coding this, is there a more standard way to do this with PIL or OpenCV Python?
CodePudding user response:
Your image has some issues. Firstly, it has a completely superfluous alpha channel which can be ignored. Secondly, the colours around your blues are quite a long way from blue!
I used your planned approach and found the removal was pretty poor:
#!/usr/bin/env python3
import cv2
import numpy as np
# Load image
im = cv2.imread('nwP8M.png')
# Define lower and upper limits of our blue
BlueMin = np.array([90, 200, 200],np.uint8)
BlueMax = np.array([100, 255, 255],np.uint8)
# Go to HSV colourspace and get mask of blue pixels
HSV = cv2.cvtColor(im,cv2.COLOR_BGR2HSV)
mask = cv2.inRange(HSV, BlueMin, BlueMax)
# Make all pixels in mask white
im[mask>0] = [255,255,255]
cv2.imwrite('DEBUG-plainMask.png', im)
That gives this:
If you broaden the range, to get the rough edges, you start to affect the green letters, so instead I dilated the mask so that pixels spatially near the blues are made white as well as pixels chromatically near the blues:
# Try dilating (enlarging) mask with 3x3 structuring element
SE = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
mask = cv2.dilate(mask, kernel, iterations=1)
# Make all pixels in mask white
im[mask>0] = [255,255,255]
cv2.imwrite('result.png', im)
That gets you this:
You may wish to diddle with the actual values for your other images, but the principle is the same.
CodePudding user response:
I think you are looking for the function inRange:
thresh = 5
bgr = [255 - thresh, thresh , thresh ]
minBGR = np.array([bgr[0] - thresh, bgr[1] - thresh, bgr[2] - thresh])
maxBGR = np.array([bgr[0] thresh, bgr[1] thresh, bgr[2] thresh])
maskBGR = cv2.inRange(image, minBGR, maxBGR)
resultBGR = cv2.bitwise_or(image, maskBGR)