Data
I have fit a LMER model using the data below:
work <- structure(list(Coffee_Cups = c(3L, 0L, 2L, 6L, 4L, 5L, 3L, 3L,
2L, 2L, 3L, 1L, 1L, 3L, 2L, 2L, 0L, 1L, 1L, 4L, 4L, 3L, 0L, 1L,
3L, 0L, 0L, 0L, 0L, 2L, 0L, 1L, 2L, 3L, 2L, 2L, 4L, 3L, 6L, 6L,
3L, 4L, 6L, 8L, 3L, 5L, 0L, 2L, 2L, 8L, 6L, 4L, 6L, 4L, 4L, 2L,
6L, 6L, 5L, 1L, 1L, 5L, 4L, 6L, 5L, 0L, 6L, 6L, 4L, 4L, 2L, 2L,
6L, 6L, 7L, 3L, 3L, 0L, 5L, 7L, 6L, 3L, 5L, 3L, 3L, 1L, 9L, 9L,
3L, 3L, 6L, 6L, 6L, 3L, 0L, 7L, 6L, 6L, 3L, 9L, 3L, 8L, 8L, 3L,
3L, 7L, 6L, 3L, 3L, 3L, 6L, 6L, 6L, 1L, 9L, 3L, 3L, 2L, 6L, 3L,
6L, 9L, 6L, 8L, 9L, 6L, 6L, 6L, 0L, 3L, 0L, 3L, 3L, 6L, 3L, 0L,
9L, 3L, 0L, 2L, 0L, 6L, 6L, 6L, 3L, 6L, 3L, 9L, 3L, 0L, 0L, 6L,
3L, 3L, 3L, 3L, 6L, 0L, 6L, 3L, 3L, 5L, 5L, 3L, 0L, 6L, 4L, 2L,
0L, 2L, 4L, 0L, 6L, 4L, 4L, 2L, 2L, 0L, 9L, 6L, 3L, 6L, 6L, 9L,
0L, 6L, 6L, 6L, 6L, 6L, 6L, 3L, 3L, 0L, 9L, 6L, 3L, 6L, 3L, 6L,
1L, 6L, 6L, 6L, 6L, 6L, 1L, 3L, 9L, 6L, 3L, 6L, 9L, 3L, 5L, 6L,
3L, 0L, 6L, 3L, 3L, 5L, 0L, 6L, 3L, 5L, 3L, 0L, 6L, 7L, 3L, 6L,
6L, 6L, 6L, 3L, 5L, 6L, 7L, 6L, 6L, 4L, 6L, 4L, 5L, 5L, 6L, 8L,
6L, 6L, 6L, 9L, 3L, 3L, 9L, 7L, 8L, 4L, 3L, 3L, 3L, 6L, 6L, 6L,
3L, 4L, 3L, 3L, 6L, 4L, 3L, 3L, 4L, 6L, 0L, 3L, 6L, 4L, 3L, 3L,
7L, 4L, 4L, 3L, 1L, 6L, 4L, 6L, 5L, 3L, 6L, 6L, 3L, 6L, 3L, 5L,
6L, 6L, 3L, 6L, 4L, 9L, 7L, 6L, 3L, 3L, 3L, 4L, 6L, 3L, 6L, 3L,
4L, 4L, 3L, 5L, 5L, 5L), Mins_Work = c(435L, 350L, 145L, 135L,
15L, 60L, 60L, 390L, 395L, 395L, 315L, 80L, 580L, 175L, 545L,
230L, 435L, 370L, 255L, 515L, 330L, 65L, 115L, 550L, 420L, 45L,
266L, 196L, 198L, 220L, 17L, 382L, 0L, 180L, 343L, 207L, 263L,
332L, 0L, 0L, 259L, 417L, 282L, 685L, 517L, 111L, 64L, 466L,
499L, 460L, 269L, 300L, 427L, 301L, 436L, 342L, 229L, 379L, 102L,
146L, 94L, 345L, 73L, 204L, 512L, 113L, 135L, 458L, 493L, 552L,
108L, 335L, 395L, 508L, 546L, 396L, 159L, 325L, 747L, 650L, 377L,
461L, 669L, 186L, 220L, 410L, 708L, 409L, 515L, 413L, 166L, 451L,
660L, 177L, 192L, 191L, 461L, 637L, 297L, 601L, 586L, 270L, 479L,
0L, 480L, 397L, 174L, 111L, 0L, 610L, 332L, 345L, 423L, 160L,
611L, 0L, 345L, 550L, 324L, 427L, 505L, 632L, 560L, 230L, 495L,
235L, 522L, 654L, 465L, 377L, 260L, 572L, 612L, 594L, 624L, 237L,
0L, 38L, 409L, 634L, 292L, 706L, 399L, 568L, 0L, 694L, 298L,
616L, 553L, 581L, 423L, 636L, 623L, 338L, 345L, 521L, 438L, 504L,
600L, 616L, 656L, 285L, 474L, 688L, 278L, 383L, 535L, 363L, 470L,
457L, 303L, 123L, 363L, 329L, 513L, 636L, 421L, 220L, 430L, 428L,
536L, 156L, 615L, 429L, 103L, 332L, 250L, 281L, 248L, 435L, 589L,
515L, 158L, 0L, 649L, 427L, 193L, 225L, 0L, 280L, 163L, 536L,
301L, 406L, 230L, 519L, 0L, 303L, 472L, 392L, 326L, 368L, 405L,
515L, 308L, 259L, 769L, 93L, 517L, 261L, 420L, 248L, 265L, 834L,
313L, 131L, 298L, 134L, 385L, 648L, 529L, 487L, 533L, 641L, 429L,
339L, 508L, 560L, 439L, 381L, 397L, 692L, 534L, 148L, 366L, 167L,
425L, 476L, 384L, 498L, 502L, 308L, 360L, 203L, 410L, 626L, 593L,
409L, 531L, 157L, 0L, 357L, 443L, 615L, 564L, 341L, 352L, 609L,
686L, 386L, 323L, 362L, 597L, 325L, 51L, 570L, 579L, 284L, 0L,
530L, 171L, 640L, 263L, 112L, 217L, 152L, 203L, 394L, 135L, 234L,
507L, 224L, 174L, 210L, 138L, 52L, 326L, 413L, 695L, 370L, 256L,
327L, 490L, 128L, 469L, 567L, 359L, 561L, 478L, 233L, 550L, 390L,
406L, 56L, 47L, 258L, 332L, 114L), Day_Name = c("Wednesday",
"Thursday", "Friday", "Saturday", "Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday", "Sunday", "Monday",
"Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday",
"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday",
"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday", "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday", "Sunday", "Monday",
"Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Monday",
"Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday",
"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday",
"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday", "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday", "Sunday", "Monday",
"Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday",
"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday",
"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday", "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday", "Sunday", "Monday",
"Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday",
"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday",
"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday", "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday", "Sunday", "Monday",
"Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday",
"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday",
"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday", "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday", "Sunday", "Monday",
"Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday",
"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday",
"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday", "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday", "Sunday", "Monday",
"Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday",
"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday",
"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday", "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday", "Sunday")), class = "data.frame", row.names = c(NA,
-318L))
Problem
I have fit the model and simulated it a thousand times, which I pivoted in order to put all the values into one density graph:
#### Fit Model ####
fit.work <- lmer(Mins_Work ~ Coffee_Cups (1|Day_Name),
data = work)
#### Simulate Model 1000x ####
sim <- simulate(fit.work, 1000)
#### Pivot Simulation Data ####
sim <- sim %>%
pivot_longer(cols = everything(),
names_to = "Simulation",
values_to = "Prediction")
#### Graph Data ####
ggplot(sim,
aes(x=Prediction))
geom_density()
However, there are two things I want to achieve that I'm perplexed on right now. First, I would like to make separate lines for the simulation data which are all one color (i.e. 1000 blue lines). Second, I want to overlay the actual y values (work$Mins_Work) on top of that graph. The problem is that by pivoting I have no created a ton of y values that I'm not sure I can overlay the data on. It should look something like this:
CodePudding user response:
To achieve your desired result you have to map Simulation
on the group
aes to get separate densities for each simulation run and add a second geom_density
for your observed data. To get different colors and line sizes map on the color
and size
aes which could then be set via scale_xxx_manual
. Finally, to get a line for the legend key I switched the key_glyph
to "path"
.
library(ggplot2)
ggplot()
geom_density(data = sim, aes(Prediction, color = "Model-predicted Data", size = "Model-predicted Data",
group = Simulation), key_glyph = "path")
geom_density(data = work, aes(Mins_Work, color = "Observed Data", size = "Observed Data"),
key_glyph = "path")
scale_color_manual(values = c("steelblue", "forestgreen"))
scale_size_manual(values = c(.1, .5))
labs(color = NULL, size = NULL)